WEB CLIENT LEAGUE FILES


Milwaukee Admirals


GP: 11 | W: 3 | L: 7 | OTL: 1 | P: 7
GF: 17 | GA: 29 | PP%: 0.00% | PK%: 80.65%
GM : Richard Miller | Team Overall : 66
Next Games vs Seattle Thunderbirds
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Taylor BeckXX100.00764583717682847166676774747779050680
2Nic Dowd (R)XX98.00744387727178806778646372648076050670
3Jacob JosefsonXX100.00683391757080757075676274648073050670
4Alex Friesen (R)XX100.00743376737081846872656473616566050660
5Cedric Paquette (R)XXX100.00785276717978766874666370595960050660
6Zac RinaldoXX99.00878563697676856663646170527464050660
7Landon Ferraro (R)XX100.00744781797276796670656369635650050650
8Felix Girard (R)X100.00744276747078826573626071575052050640
9Martin Frk (R)X100.00744388707675726558636067725350050630
10Quentin Shore (R)XX100.00723283687168686168595566575252050600
11Austin Fyten (R)X99.00634970656670505150504567484040050540
12Mark FayneX100.00753982727785876930666274478680050700
13Andrew MacWilliamX100.00824580708582826430626073477876050690
14Anthony Bitetto (R)X100.00815270737684847030676673676464050690
15Yannick WeberX100.00673988727481836630646173518380050680
16Robbie Russo (R)X100.00733284757284866730656173465858050680
17Codey GoloubefX100.00734284757679786330626169507373050670
18Jake Dotchin (R)X100.00807073707979786130595369485450050650
Scratches
1Nick DeSimoneX100.00683088766973686230615669484747050630
2Daniel Maggio (R)X100.00777372687676645730554168404343050620
3Bryce Aneloski (R)X100.00734278607277685730545068454645050610
TEAM AVERAGE99.8174468071747877645062597155636105065
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Marek Mazanec (R)100.0079767883788080808077815957050750
2Adam Wilcox (R)100.0082757580837979797978815252050750
Scratches
1Martin Ouellette (R)100.0079757279817677787875745755050730
TEAM AVERAGE100.008075758181787979797779565505074
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Peter Horachek84767073797976CAN581875,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Anthony BitettoMilwaukee Admirals (NSH)D11325-38039142361513.04%1423321.190001024011022110.00%000000.4300000011
2Mark FayneMilwaukee Admirals (NSH)D10044-220101711790.00%1121621.70000222011122000.00%000000.3700000000
3Jacob JosefsonMilwaukee Admirals (NSH)C/LW11224-4206233119316.45%022520.5000010261011250162.77%9400000.3502000001
4Andrew MacWilliamMilwaukee Admirals (NSH)D11033-1802474430.00%917415.850000000003000.00%000000.3400000010
5Landon FerraroMilwaukee Admirals (NSH)C/RW11123-2201114176185.88%115614.22000250000130040.63%3200000.3800000010
6Nic DowdMilwaukee Admirals (NSH)C/RW11033-52013313211110.00%123821.710004230001230055.29%29300000.2512000000
7Quentin ShoreMilwaukee Admirals (NSH)C/RW1112300063611116.67%011210.250000000000000.00%400000.5300000000
8Taylor BeckMilwaukee Admirals (NSH)LW/RW10213-44012173110306.45%519719.79000223000000157.14%1400000.3002000000
9Felix GirardMilwaukee Admirals (NSH)C111230201111145107.14%211110.1700000000011047.71%10900000.5400000001
10Alex FriesenMilwaukee Admirals (NSH)C/LW1120212012204011265.00%022420.410005120000180052.00%10000000.1800000000
11Martin FrkMilwaukee Admirals (NSH)RW1111200031111279.09%112511.4100000000000033.33%1200000.3200000000
12Cedric PaquetteMilwaukee Admirals (NSH)C/LW/RW111120402319214164.76%019117.450004210000220050.00%24600000.2100000100
13Yannick WeberMilwaukee Admirals (NSH)D11112-280111392311.11%1521619.68000000000500100.00%100000.1800000000
14Zac RinaldoMilwaukee Admirals (NSH)LW/RW11112-2403491911195.26%116014.60000421000000055.56%900000.2500000000
15Robbie RussoMilwaukee Admirals (NSH)D11022-1401512105100.00%1522420.42000821000026000.00%000000.1800000000
16Austin FytenMilwaukee Admirals (NSH)LW11011-260768150.00%317515.9800000000000033.33%900000.1100000000
17Jake DotchinMilwaukee Admirals (NSH)D110111001482000.00%0686.2300000000123000.00%000000.2900000000
18Codey GoloubefMilwaukee Admirals (NSH)D11011-380291213350.00%1218416.7500082100000000.00%000000.1100000000
19Matt HunwickNashville PredatorsD1000-100150000.00%22121.400000100004000.00%000000.0000000000
20Colin GreeningNashville PredatorsLW/RW1000-100110040.00%11818.450000100000000.00%100000.0000000000
Team Total or Average198163046-316602822533021082335.30%93327916.560005923012342122352.16%92400000.2816000133
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Marek MazanecMilwaukee Admirals (NSH)62310.9142.2836800141620000.800565010
2Adam WilcoxMilwaukee Admirals (NSH)51400.9202.8229800141760000.000056100
Team Total or Average113710.9172.5266700283380000.80051111110


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam WilcoxMilwaukee Admirals (NSH)C/LW/RW2611/26/1992 11:10:15 AMYes187 Lbs6 ft0NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link / NHL Link
Alex FriesenMilwaukee Admirals (NSH)C/LW271/30/1991 7:21:30 AMYes186 Lbs5 ft9NoNoNo1RFAPro & Farm600,000$Link / NHL Link
Andrew MacWilliamMilwaukee Admirals (NSH)D283/25/1990 5:03:43 AMNo223 Lbs6 ft2NoNoNo1RFAPro & Farm742,500$Link / NHL Link
Anthony BitettoMilwaukee Admirals (NSH)D287/15/1990 10:25:38 AMYes210 Lbs6 ft1NoNoNo2RFAPro & Farm1,000,000$1,000,000$Link / NHL Link
Austin FytenMilwaukee Admirals (NSH)LW275/3/1991 5:47:05 AMYes190 Lbs6 ft1NoNoNo1RFAPro & Farm600,000$NHL Link
Bryce AneloskiMilwaukee Admirals (NSH)D284/27/1990 9:55:47 AMYes198 Lbs6 ft2NoNoNo1RFAPro & Farm600,000$NHL Link
Cedric PaquetteMilwaukee Admirals (NSH)C/LW/RW258/13/1993 9:15:26 AMYes198 Lbs6 ft1NoNoNo1RFAPro & Farm925,000$Link / NHL Link
Codey GoloubefMilwaukee Admirals (NSH)D2911/30/1989 1:59:52 PMNo200 Lbs6 ft1NoNoNo3UFAPro & Farm600,000$675,000$725,000$Link / NHL Link
Daniel MaggioMilwaukee Admirals (NSH)D273/4/1991 10:28:58 AMYes202 Lbs6 ft3NoNoNo1RFAPro & Farm600,000$Link / NHL Link
Felix GirardMilwaukee Admirals (NSH)C245/9/1994 8:57:41 AMYes197 Lbs5 ft10NoNoNo2RFAPro & Farm700,000$700,000$Link / NHL Link
Jacob JosefsonMilwaukee Admirals (NSH)C/LW273/2/1991 5:25:39 AMNo196 Lbs6 ft0NoNoNo1RFAPro & Farm1,250,000$Link / NHL Link
Jake DotchinMilwaukee Admirals (NSH)D243/24/1994 7:33:43 AMYes210 Lbs6 ft3NoNoNo1RFAPro & Farm500,000$Link / NHL Link
Landon FerraroMilwaukee Admirals (NSH)C/RW278/8/1991 5:29:18 AMYes176 Lbs6 ft0NoNoNo2RFAPro & Farm940,000$940,000$Link / NHL Link
Marek MazanecMilwaukee Admirals (NSH)LW/RW277/18/1991 10:40:03 AMYes187 Lbs6 ft4NoNoNo1RFAPro & Farm900,000$Link / NHL Link
Mark FayneMilwaukee Admirals (NSH)D315/15/1987 3:58:56 AMNo209 Lbs6 ft3NoNoNo1UFAPro & Farm2,000,000$Link / NHL Link
Martin FrkMilwaukee Admirals (NSH)RW2510/5/1993 5:11:50 AMYes205 Lbs6 ft1NoNoNo1RFAPro & Farm1,045,000$Link / NHL Link
Martin OuelletteMilwaukee Admirals (NSH)LW/RW2712/30/1991 11:11:42 AMYes160 Lbs6 ft1NoNoNo2RFAPro & Farm700,000$700,000$Link / NHL Link
Nic DowdMilwaukee Admirals (NSH)C/RW285/27/1990 10:22:01 AMYes197 Lbs6 ft2NoNoNo2RFAPro & Farm900,000$900,000$Link / NHL Link
Nick DeSimoneMilwaukee Admirals (NSH)D2411/21/1994 6:49:58 AMNo195 Lbs6 ft2NoNoNo1RFAPro & Farm750,000$NHL Link
Quentin ShoreMilwaukee Admirals (NSH)C/RW245/25/1994 11:04:49 AMYes183 Lbs6 ft2NoNoNo3RFAPro & Farm500,000$500,000$600,000$NHL Link
Robbie RussoMilwaukee Admirals (NSH)D252/15/1993 9:01:02 AMYes191 Lbs6 ft0NoNoNo2RFAPro & Farm700,000$700,000$Link / NHL Link
Taylor BeckMilwaukee Admirals (NSH)LW/RW275/13/1991 9:30:33 AMNo203 Lbs6 ft2NoNoNo1RFAPro & Farm850,000$Link / NHL Link
Yannick WeberMilwaukee Admirals (NSH)D309/23/1988 4:15:11 AMNo200 Lbs5 ft11NoNoNo1UFAPro & Farm1,500,000$Link / NHL Link
Zac RinaldoMilwaukee Admirals (NSH)LW/RW286/15/1990 9:44:48 AMNo192 Lbs5 ft10NoNoNo3RFAPro & Farm750,000$950,000$1,000,000$Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2426.79196 Lbs6 ft11.58848,021$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Zac RinaldoNic DowdTaylor Beck33014
2Austin FytenJacob JosefsonLandon Ferraro30113
3Alex FriesenCedric PaquetteMartin Frk25122
4Austin FytenFelix GirardQuentin Shore12230
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Anthony BitettoMark Fayne33014
2Andrew MacWilliamRobbie Russo30113
3Yannick WeberCodey Goloubef30122
4Jake DotchinYannick Weber7122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Taylor BeckNic DowdJacob Josefson50005
2Zac RinaldoCedric PaquetteJacob Josefson50005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Anthony BitettoMark Fayne50005
2Codey GoloubefRobbie Russo50005
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Landon FerraroJacob Josefson50122
2Cedric PaquetteNic Dowd50122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Mark FayneAnthony Bitetto50122
2Jake DotchinRobbie Russo50122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Landon Ferraro50122Yannick WeberAndrew MacWilliam50122
2Felix Girard50122Mark FayneRobbie Russo50122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Nic DowdJacob Josefson50122
2Cedric PaquetteTaylor Beck50122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Yannick WeberAnthony Bitetto50122
2Mark FayneRobbie Russo50122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Cedric PaquetteNic DowdTaylor BeckAnthony BitettoMark Fayne
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Cedric PaquetteJacob JosefsonTaylor BeckYannick WeberAndrew MacWilliam
Extra Forwards
Normal PowerPlayPenalty Kill
Landon Ferraro, Taylor Beck, Cedric PaquetteZac Rinaldo, Taylor BeckLandon Ferraro
Extra Defensemen
Normal PowerPlayPenalty Kill
Codey Goloubef, Yannick Weber, Andrew MacWilliamJake DotchinRobbie Russo, Yannick Weber
Penalty Shots
Jacob Josefson, Taylor Beck, Nic Dowd, Cedric Paquette, Zac Rinaldo
Goalie
#1 : Adam Wilcox, #2 : Marek Mazanec


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Cleveland Monsters1010000003-3000000000001010000003-300.00000000646120858912410288621200.00%3166.67%018635352.69%20340350.37%9316855.36%2641812607914472
2Denver Spurs11000000321110000003210000000000021.00036900646138858912410237440100.00%20100.00%018635352.69%20340350.37%9316855.36%2641812607914472
3Hershey Bears1010000025-3000000000001010000025-300.00023500646126858912410263419100.00%220.00%018635352.69%20340350.37%9316855.36%2641812607914472
4Iowa Wild1010000012-1000000000001010000012-100.00012300646125858912410263424200.00%20100.00%018635352.69%20340350.37%9316855.36%2641812607914472
5Laval Rocket1010000023-1000000000001010000023-100.000246006461278589124101914426300.00%20100.00%018635352.69%20340350.37%9316855.36%2641812607914472
6Louisville Thunder1010000024-2000000000001010000024-200.000246006461288589124103711629300.00%3166.67%018635352.69%20340350.37%9316855.36%2641812607914472
7Oakville Wolves10000010321100000103210000000000021.00034700646122858912410325424000.00%20100.00%018635352.69%20340350.37%9316855.36%2641812607914472
8Ontario Reign1000000112-1000000000001000000112-110.500123006461448589124102610617600.00%20100.00%018635352.69%20340350.37%9316855.36%2641812607914472
9Philadelphia Phantoms2110000024-22110000024-20000000000020.5002460064614485891241092232057300.00%9188.89%118635352.69%20340350.37%9316855.36%2641812607914472
10Texas Stars1010000012-11010000012-10000000000000.00011200646128858912410299825400.00%4175.00%018635352.69%20340350.37%9316855.36%2641812607914472
Total1127000111729-1252200010910-160500001819-1170.31817304700646130285891241033893662822500.00%31680.65%118635352.69%20340350.37%9316855.36%2641812607914472
_Since Last GM Reset1127000111729-1252200010910-160500001819-1170.31817304700646130285891241033893662822500.00%31680.65%118635352.69%20340350.37%9316855.36%2641812607914472
_Vs Conference815000111320-73110001076150400001614-850.31313233600646123285891241022067422062100.00%20385.00%018635352.69%20340350.37%9316855.36%2641812607914472
_Vs Division4030000059-4201000004402020000015-400.00059140064611118589124101062722110900.00%11281.82%018635352.69%20340350.37%9316855.36%2641812607914472

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
117L3173047302338936628200
All Games
GPWLOTWOTL SOWSOLGFGA
112700111729
Home Games
GPWLOTWOTL SOWSOLGFGA
5220010910
Visitor Games
GPWLOTWOTL SOWSOLGFGA
6050001819
Last 10 Games
WLOTWOTL SOWSOL
360001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
2500.00%31680.65%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
8589124106461
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
18635352.69%20340350.37%9316855.36%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
2641812607914472


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-11-2514Philadelphia Phantoms3Milwaukee Admirals0LBoxScore
4 - 2018-11-2737Denver Spurs2Milwaukee Admirals3WBoxScore
6 - 2018-11-2950Milwaukee Admirals1Iowa Wild2LBoxScore
7 - 2018-11-3061Milwaukee Admirals1Ontario Reign2LXXBoxScore
8 - 2018-12-0177Philadelphia Phantoms1Milwaukee Admirals2WBoxScore
9 - 2018-12-0289Milwaukee Admirals2Louisville Thunder4LBoxScore
11 - 2018-12-04108Texas Stars2Milwaukee Admirals1LBoxScore
13 - 2018-12-06128Oakville Wolves2Milwaukee Admirals3WXXBoxScore
14 - 2018-12-07136Milwaukee Admirals0Cleveland Monsters3LBoxScore
16 - 2018-12-09156Milwaukee Admirals2Hershey Bears5LBoxScore
17 - 2018-12-10166Milwaukee Admirals2Laval Rocket3LBoxScore
19 - 2018-12-12183Seattle Thunderbirds-Milwaukee Admirals-
21 - 2018-12-14199Toronto Marlies-Milwaukee Admirals-
22 - 2018-12-15212Milwaukee Admirals-Rockford IceHogs-
24 - 2018-12-17231Denver Spurs-Milwaukee Admirals-
26 - 2018-12-19245Milwaukee Admirals-Denver Spurs-
28 - 2018-12-21262Jacksonville Jokers-Milwaukee Admirals-
29 - 2018-12-22280Philadelphia Phantoms-Milwaukee Admirals-
32 - 2018-12-25299Milwaukee Admirals-Austin Aces-
33 - 2018-12-26313Milwaukee Admirals-Texas Stars-
34 - 2018-12-27324Halifax Mooseheads-Milwaukee Admirals-
36 - 2018-12-29336Milwaukee Admirals-Jacksonville Jokers-
38 - 2018-12-31354Syracuse Crunch-Milwaukee Admirals-
40 - 2019-01-02376Wilkes Barre-Scranton-Milwaukee Admirals-
41 - 2019-01-03392Milwaukee Admirals-Bridgeport Sound Tigers-
42 - 2019-01-04402Milwaukee Admirals-Syracuse Crunch-
44 - 2019-01-06415Seattle Thunderbirds-Milwaukee Admirals-
46 - 2019-01-08436Milwaukee Admirals-Halifax Mooseheads-
47 - 2019-01-09446Binghamton Senators-Milwaukee Admirals-
49 - 2019-01-11460Milwaukee Admirals-Durham Pioneers-
50 - 2019-01-12474Milwaukee Admirals-Carolina Panthers-
52 - 2019-01-14491Richmond Renegades-Milwaukee Admirals-
54 - 2019-01-16508Hartford Wolfpack-Milwaukee Admirals-
55 - 2019-01-17523Milwaukee Admirals-London Knights-
57 - 2019-01-19543Rockford IceHogs-Milwaukee Admirals-
58 - 2019-01-20557Milwaukee Admirals-Cleveland Monsters-
60 - 2019-01-22571Hershey Bears-Milwaukee Admirals-
61 - 2019-01-23587Milwaukee Admirals-Rockford IceHogs-
63 - 2019-01-25602Adirondack Angels-Milwaukee Admirals-
65 - 2019-01-27622Milwaukee Admirals-Durham Pioneers-
66 - 2019-01-28636Louisville Thunder-Milwaukee Admirals-
68 - 2019-01-30650Milwaukee Admirals-Iowa Wild-
69 - 2019-01-31660Milwaukee Admirals-Oakville Wolves-
71 - 2019-02-02679Texas Stars-Milwaukee Admirals-
73 - 2019-02-04696Durham Pioneers-Milwaukee Admirals-
74 - 2019-02-05714Milwaukee Admirals-Seattle Thunderbirds-
76 - 2019-02-07727Cleveland Monsters-Milwaukee Admirals-
78 - 2019-02-09745Milwaukee Admirals-Hershey Bears-
79 - 2019-02-10759London Knights-Milwaukee Admirals-
82 - 2019-02-13776Milwaukee Admirals-Binghamton Senators-
83 - 2019-02-14785Milwaukee Admirals-Richmond Renegades-
84 - 2019-02-15799Bridgeport Sound Tigers-Milwaukee Admirals-
87 - 2019-02-18821Denver Spurs-Milwaukee Admirals-
88 - 2019-02-19838Milwaukee Admirals-Philadelphia Phantoms-
89 - 2019-02-20850Toronto Marlies-Milwaukee Admirals-
90 - 2019-02-21861Milwaukee Admirals-Laval Rocket-
93 - 2019-02-24882Ontario Reign-Milwaukee Admirals-
95 - 2019-02-26903Iowa Wild-Milwaukee Admirals-
96 - 2019-02-27913Milwaukee Admirals-Toronto Marlies-
97 - 2019-02-28924Milwaukee Admirals-Ontario Reign-
98 - 2019-03-01938Milwaukee Admirals-Long Island Ducks-
100 - 2019-03-03956Long Island Ducks-Milwaukee Admirals-
103 - 2019-03-06979Butte Wolverines-Milwaukee Admirals-
104 - 2019-03-07997Carolina Panthers-Milwaukee Admirals-
Trade Deadline --- Trades can’t be done after this day is simulated!
105 - 2019-03-081003Milwaukee Admirals-Long Island Ducks-
107 - 2019-03-101027Austin Aces-Milwaukee Admirals-
109 - 2019-03-121039Milwaukee Admirals-Adirondack Angels-
110 - 2019-03-131053Milwaukee Admirals-Pensacola Ice Flyers-
111 - 2019-03-141065Milwaukee Admirals-Ontario Reign-
113 - 2019-03-161080Butte Wolverines-Milwaukee Admirals-
115 - 2019-03-181100Oakland Seals-Milwaukee Admirals-
117 - 2019-03-201113Milwaukee Admirals-Hartford Wolfpack-
118 - 2019-03-211126Milwaukee Admirals-Butte Wolverines-
119 - 2019-03-221142Pensacola Ice Flyers-Milwaukee Admirals-
122 - 2019-03-251161Oakland Seals-Milwaukee Admirals-
123 - 2019-03-261179Laval Rocket-Milwaukee Admirals-
126 - 2019-03-291201Milwaukee Admirals-Oakland Seals-
127 - 2019-03-301213Austin Aces-Milwaukee Admirals-
128 - 2019-03-311223Milwaukee Admirals-Oakland Seals-
129 - 2019-04-011229Milwaukee Admirals-Louisville Thunder-
132 - 2019-04-041255Oakville Wolves-Milwaukee Admirals-
133 - 2019-04-051263Milwaukee Admirals-Wilkes Barre-Scranton-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
36 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,035,250$ 2,056,083$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
366,482$ 15,188$ 255,474$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 117 21,718$ 2,541,006$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20181127000111729-1252200010910-160500001819-11717304700646130285891241033893662822500.00%31680.65%118635352.69%20340350.37%9316855.36%2641812607914472
Total Regular Season1127000111729-1252200010910-160500001819-11717304700646130285891241033893662822500.00%31680.65%118635352.69%20340350.37%9316855.36%2641812607914472