WEB CLIENT LEAGUE FILES


Milwaukee Admirals


GP: 2 | W: 0 | L: 0 | OTL: 2 | P: 2
GF: 4 | GA: 6 | PP%: 0.00% | PK%: 100.00%
GM : Richard Miller | Team Overall : 67
Next Games vs Stockton Heat
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Nic Dowd (R)XX98.00704391737382847079686573648580050690
2Cedric PaquetteXXX100.00785278727981807074676673596565050680
3Zac RinaldoXX98.00888568717680877066666572527870050680
4Landon Ferraro (R)XX98.00744784797280826771676570636458050670
5A.J. Greer (R)X100.00775672747979787164686670686865050670
6Colin GreeningXX100.00744279748080806673646271677880050670
7Liam O'Brien (R)X100.00783783748078796766656474576060050660
8Justin Kirkland (R)X99.00744873727477776762656268636562050650
9Felix Girard (R)X100.00744279747278846573636270575657050650
10Martin Frk (R)X100.00714389707777766658636568725856050640
11Yakov Trenin (R)XX100.00693685737674746672656068615853050640
12Quentin Shore (R)XX100.00713284697272726370606166575656050620
13Anthony Bitetto (R)X100.00825266737886867130696774677070050711
14Robbie Russo (R)X100.00733286767386907030686374466464050700
15Codey GoloubefX98.00754282757781826430636168507876050680
16Dakota Mermis (R)X100.00723986747580746530635771505858050660
17Jake Dotchin (R)X100.00797070708077806130604670486056050660
18Daniel Maggio (R)X100.00777372687776645730554168404343050620
Scratches
1Frederick Gaudreau (R)XXX100.00693289746873605971575068544846050600
2Nick DeSimoneX100.00683088767373686230615669484747050640
TEAM AVERAGE99.5575478073767978665564607057636105066
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Adam Wilcox (R)100.0086838380878384838480846762050790
2Martin Ouellette (R)99.0079757279817777787875746058050740
Scratches
TEAM AVERAGE99.508379788084808181817879646005077
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jay Leach74757073727675USA403400,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Cedric PaquetteMilwaukee Admirals (NSH)C/LW/RW2112-1008194011.11%03517.7600013000000047.50%4000001.1301000010
2Justin KirklandMilwaukee Admirals (NSH)LW2022000232030.00%03718.8100003000040033.33%300001.0601000000
3Landon FerraroMilwaukee Admirals (NSH)C/RW2101-2200561316.67%03919.7700002000000050.00%200000.5100000000
4Quentin ShoreMilwaukee Admirals (NSH)C/RW2011100203110.00%0115.830000000000000.00%100001.7100000000
5Zac RinaldoMilwaukee Admirals (NSH)LW/RW2011-100670150.00%04120.570000200000000.00%000000.4900000000
6Codey GoloubefMilwaukee Admirals (NSH)D2011100633130.00%35025.000002300005000.00%000000.4000000000
7Colin GreeningMilwaukee Admirals (NSH)LW/RW21010005252120.00%03316.9800003000010050.00%200000.5900000001
8Felix GirardMilwaukee Admirals (NSH)C210110015101100.00%0189.2300000000060056.52%2300001.0800000000
9Nic DowdMilwaukee Admirals (NSH)C/RW2000-100065210.00%04120.5700002000000062.22%4500000.0001000000
10Dakota MermisMilwaukee Admirals (NSH)D2000020320100.00%43618.160000200002000.00%000000.0000000000
11Martin FrkMilwaukee Admirals (NSH)RW2000000322030.00%02613.450000000000000.00%000000.0000000000
12Jake DotchinMilwaukee Admirals (NSH)D2000-200240000.00%13718.730000000000000.00%000000.0000000000
13Yakov TreninMilwaukee Admirals (NSH)C/LW2000040124050.00%02713.8000000000000050.00%400000.0000000000
14A.J. GreerMilwaukee Admirals (NSH)LW2000100110010.00%0189.040000000006000.00%000000.0001000000
15Anthony BitettoMilwaukee Admirals (NSH)D2000-200343010.00%14522.570001200005000.00%000000.0000000000
16Daniel MaggioMilwaukee Admirals (NSH)D2000000530100.00%33618.380000000005000.00%000000.0000000000
17Liam O'BrienMilwaukee Admirals (NSH)C2000020052130.00%03115.7000000000040061.29%3100000.0000000000
18Robbie RussoMilwaukee Admirals (NSH)D2000120820260.00%14924.650000300003000.00%000000.0000000000
Team Total or Average364610-412056574517378.89%1361817.170004290000470055.63%15100000.3204000011
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Adam WilcoxMilwaukee Admirals (NSH)10010.9311.8565002290000.750411000
2Martin OuelletteMilwaukee Admirals (NSH)10010.8852.9062003260000.000011000
Team Total or Average20020.9092.36127005550000.750422000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
A.J. GreerMilwaukee Admirals (NSH)LW2312/14/1996 8:34:03 AMYes210 Lbs6 ft3NoNoNo1RFAPro & Farm900,000$Link / NHL Link
Adam WilcoxMilwaukee Admirals (NSH)C/LW/RW2711/26/1992 11:10:15 AMYes189 Lbs6 ft0NoNoNo2RFAPro & Farm700,000$700,000$Link / NHL Link
Anthony BitettoMilwaukee Admirals (NSH)D297/15/1990 10:25:38 AMYes210 Lbs6 ft1NoNoNo1UFAPro & Farm1,000,000$Link / NHL Link
Cedric PaquetteMilwaukee Admirals (NSH)C/LW/RW268/13/1993 9:15:26 AMNo198 Lbs6 ft1NoNoNo3RFAPro & Farm1,100,000$1,100,000$1,100,000$Link / NHL Link
Codey GoloubefMilwaukee Admirals (NSH)D3011/30/1989 1:59:52 PMNo200 Lbs6 ft1NoNoNo2UFAPro & Farm675,000$725,000$Link / NHL Link
Colin GreeningMilwaukee Admirals (NSH)LW/RW333/9/1986 4:08:07 AMNo210 Lbs6 ft2NoNoNo1UFAPro & Farm800,000$Link / NHL Link
Dakota MermisMilwaukee Admirals (NSH)D251/5/1994 10:29:07 AMYes195 Lbs6 ft0NoNoNo2RFAPro & Farm800,000$800,000$Link / NHL Link
Daniel MaggioMilwaukee Admirals (NSH)D283/4/1991 10:28:58 AMYes202 Lbs6 ft3NoNoNo1RFAPro & Farm800,000$Link / NHL Link
Felix GirardMilwaukee Admirals (NSH)C255/9/1994 8:57:41 AMYes197 Lbs5 ft10NoNoNo1RFAPro & Farm700,000$Link / NHL Link
Frederick GaudreauMilwaukee Admirals (NSH)C/LW/RW265/1/1993 8:27:59 AMYes179 Lbs6 ft0NoNoNo1RFAPro & Farm850,000$Link / NHL Link
Jake DotchinMilwaukee Admirals (NSH)D253/24/1994 7:33:43 AMYes210 Lbs6 ft3NoNoNo3RFAPro & Farm800,000$800,000$800,000$Link / NHL Link
Justin KirklandMilwaukee Admirals (NSH)LW238/2/1996 8:35:05 AMYes183 Lbs6 ft3NoNoNo2RFAPro & Farm800,000$800,000$Link / NHL Link
Landon FerraroMilwaukee Admirals (NSH)C/RW288/8/1991 5:29:18 AMYes173 Lbs6 ft0NoNoNo1RFAPro & Farm940,000$Link / NHL Link
Liam O'BrienMilwaukee Admirals (NSH)C257/29/1994 8:01:08 AMYes215 Lbs6 ft1NoNoNo2RFAPro & Farm825,000$825,000$Link / NHL Link
Martin FrkMilwaukee Admirals (NSH)RW2610/5/1993 5:11:50 AMYes205 Lbs6 ft1NoNoNo2RFAPro & Farm1,200,000$1,200,000$Link / NHL Link
Martin OuelletteMilwaukee Admirals (NSH)LW/RW2812/30/1991 11:11:42 AMYes160 Lbs6 ft1NoNoNo1RFAPro & Farm700,000$Link / NHL Link
Nic DowdMilwaukee Admirals (NSH)C/RW295/27/1990 10:22:01 AMYes197 Lbs6 ft2NoNoNo1UFAPro & Farm900,000$Link / NHL Link
Nick DeSimoneMilwaukee Admirals (NSH)D2511/21/1994 6:49:58 AMNo195 Lbs6 ft2NoNoNo3RFAPro & Farm900,000$1,000,000$1,250,000$Link / NHL Link
Quentin ShoreMilwaukee Admirals (NSH)C/RW255/25/1994 11:04:49 AMYes183 Lbs6 ft2NoNoNo2RFAPro & Farm500,000$600,000$NHL Link
Robbie RussoMilwaukee Admirals (NSH)D262/15/1993 9:01:02 AMYes191 Lbs6 ft0NoNoNo1RFAPro & Farm700,000$Link / NHL Link
Yakov TreninMilwaukee Admirals (NSH)C/LW221/13/1997 4:21:54 AMYes201 Lbs6 ft2NoNoNo3RFAPro & Farm1,100,000$1,100,000$1,100,000$Link / NHL Link
Zac RinaldoMilwaukee Admirals (NSH)LW/RW296/15/1990 9:44:48 AMNo192 Lbs5 ft10NoNoNo2UFAPro & Farm950,000$1,000,000$Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2226.50195 Lbs6 ft11.73847,273$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Zac RinaldoNic DowdLandon Ferraro33014
2Justin KirklandCedric PaquetteColin Greening30113
3Yakov TreninLiam O\'BrienMartin Frk25122
4A.J. GreerFelix GirardQuentin Shore12230
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Robbie RussoCodey Goloubef33014
2Anthony BitettoJake Dotchin30113
3Dakota MermisDaniel Maggio30122
4Robbie RussoCodey Goloubef7122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Zac RinaldoNic DowdLandon Ferraro50005
2Justin KirklandCedric PaquetteColin Greening50005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Codey GoloubefRobbie Russo50005
2Dakota MermisAnthony Bitetto50005
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Felix GirardA.J. Greer50122
2Liam O\'BrienJustin Kirkland50122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Codey GoloubefDaniel Maggio50122
2Anthony BitettoRobbie Russo50122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Landon Ferraro50122Jake DotchinDakota Mermis50122
2Felix Girard50122Daniel MaggioRobbie Russo50122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Nic DowdZac Rinaldo50122
2Cedric PaquetteLandon Ferraro50122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Codey GoloubefRobbie Russo50122
2Anthony BitettoJake Dotchin50122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Zac RinaldoNic DowdCedric PaquetteAnthony BitettoRobbie Russo
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Zac RinaldoCedric PaquetteNic DowdCodey GoloubefRobbie Russo
Extra Forwards
Normal PowerPlayPenalty Kill
Cedric Paquette, Felix Girard, Yakov TreninMartin Frk, Landon FerraroColin Greening
Extra Defensemen
Normal PowerPlayPenalty Kill
Codey Goloubef, Robbie Russo, Anthony BitettoDaniel MaggioDakota Mermis, Jake Dotchin
Penalty Shots
Zac Rinaldo, Nic Dowd, Cedric Paquette, A.J. Greer, Landon Ferraro
Goalie
#1 : Adam Wilcox, #2 : Martin Ouellette


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Louisville Thunder1000010023-1000000000001000010023-110.500224000310291514137268628200.00%30100.00%0325756.14%376457.81%153050.00%493449172813
2Oakland Seals1000000123-11000000123-10000000000010.500246000310161514137295628100.00%30100.00%0325756.14%376457.81%153050.00%493449172813
Total2000010146-21000000123-11000010023-120.500461000031045151413755131256300.00%60100.00%0325756.14%376457.81%153050.00%493449172813
_Since Last GM Reset2000010146-21000000123-11000010023-120.500461000031045151413755131256300.00%60100.00%0325756.14%376457.81%153050.00%493449172813
_Vs Conference2000010146-21000000123-11000010023-120.500461000031045151413755131256300.00%60100.00%0325756.14%376457.81%153050.00%493449172813

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
22OTL14610455513125600
All Games
GPWLOTWOTL SOWSOLGFGA
200010146
Home Games
GPWLOTWOTL SOWSOLGFGA
100000123
Visitor Games
GPWLOTWOTL SOWSOLGFGA
100010023
Last 10 Games
WLOTWOTL SOWSOL
000101
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
300.00%60100.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
15141370310
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
325756.14%376457.81%153050.00%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
493449172813


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2019-10-182Oakland Seals3Milwaukee Admirals2LXXBoxScore
2 - 2019-10-1913Milwaukee Admirals2Louisville Thunder3LXBoxScore
5 - 2019-10-2238Stockton Heat-Milwaukee Admirals-
6 - 2019-10-2343Milwaukee Admirals-Ontario Reign-
7 - 2019-10-2452Milwaukee Admirals-Texas Stars-
10 - 2019-10-2779Denver Spurs-Milwaukee Admirals-
12 - 2019-10-2992Milwaukee Admirals-Toronto Marlies-
14 - 2019-10-31103Milwaukee Admirals-Louisville Thunder-
16 - 2019-11-02112Milwaukee Admirals-Durham Pioneers-
17 - 2019-11-03122Oakland Seals-Milwaukee Admirals-
19 - 2019-11-05132Milwaukee Admirals-Texas Stars-
21 - 2019-11-07154Cleveland Monsters-Milwaukee Admirals-
24 - 2019-11-10176Milwaukee Admirals-Texas Stars-
25 - 2019-11-11184Seattle Thunderbirds-Milwaukee Admirals-
29 - 2019-11-15210Milwaukee Admirals-Ontario Reign-
30 - 2019-11-16216Iowa Wild-Milwaukee Admirals-
34 - 2019-11-20241Denver Spurs-Milwaukee Admirals-
36 - 2019-11-22256Milwaukee Admirals-Long Island Ducks-
38 - 2019-11-24270Toronto Marlies-Milwaukee Admirals-
40 - 2019-11-26285Milwaukee Admirals-Carolina Panthers-
43 - 2019-11-29301Ontario Reign-Milwaukee Admirals-
45 - 2019-12-01317Milwaukee Admirals-Ontario Reign-
48 - 2019-12-04335Stockton Heat-Milwaukee Admirals-
50 - 2019-12-06353Milwaukee Admirals-Binghamton Senators-
51 - 2019-12-07367Bridgeport Sound Tigers-Milwaukee Admirals-
53 - 2019-12-09382Milwaukee Admirals-Louisville Thunder-
56 - 2019-12-12397Oakville Wolves-Milwaukee Admirals-
58 - 2019-12-14415Milwaukee Admirals-Texas Stars-
59 - 2019-12-15430Denver Spurs-Milwaukee Admirals-
62 - 2019-12-18450Stockton Heat-Milwaukee Admirals-
63 - 2019-12-19458Milwaukee Admirals-Rockford IceHogs-
66 - 2019-12-22479Milwaukee Admirals-Cleveland Monsters-
70 - 2019-12-26491Durham Pioneers-Milwaukee Admirals-
71 - 2019-12-27503Milwaukee Admirals-Hershey Bears-
74 - 2019-12-30517Oakville Wolves-Milwaukee Admirals-
76 - 2020-01-01539Milwaukee Admirals-Denver Spurs-
77 - 2020-01-02549Carolina Panthers-Milwaukee Admirals-
80 - 2020-01-05565Milwaukee Admirals-Adirondack Angels-
81 - 2020-01-06583Syracuse Crunch-Milwaukee Admirals-
84 - 2020-01-09604Milwaukee Admirals-Halifax Mooseheads-
86 - 2020-01-11614Binghamton Senators-Milwaukee Admirals-
88 - 2020-01-13633Milwaukee Admirals-Laval Rocket-
90 - 2020-01-15644Richmond Renegades-Milwaukee Admirals-
92 - 2020-01-17663Milwaukee Admirals-Denver Spurs-
94 - 2020-01-19673Laval Rocket-Milwaukee Admirals-
96 - 2020-01-21698Hartford Wolfpack-Milwaukee Admirals-
98 - 2020-01-23706Milwaukee Admirals-Seattle Thunderbirds-
99 - 2020-01-24723Milwaukee Admirals-Oakland Seals-
102 - 2020-01-27737Richmond Renegades-Milwaukee Admirals-
103 - 2020-01-28745Milwaukee Admirals-London Knights-
105 - 2020-01-30765Rockford IceHogs-Milwaukee Admirals-
109 - 2020-02-03792Rockford IceHogs-Milwaukee Admirals-
111 - 2020-02-05800Milwaukee Admirals-Stockton Heat-
114 - 2020-02-08822Atlantic City Blackjacks-Milwaukee Admirals-
116 - 2020-02-10838Milwaukee Admirals-Laval Rocket-
118 - 2020-02-12850Milwaukee Admirals-Iowa Wild-
119 - 2020-02-13860Pensacola Ice Flyers-Milwaukee Admirals-
122 - 2020-02-16879Milwaukee Admirals-Iowa Wild-
123 - 2020-02-17891Texas Stars-Milwaukee Admirals-
126 - 2020-02-20915Seattle Thunderbirds-Milwaukee Admirals-
127 - 2020-02-21922Milwaukee Admirals-Stockton Heat-
129 - 2020-02-23940Milwaukee Admirals-Louisville Thunder-
130 - 2020-02-24952Cleveland Monsters-Milwaukee Admirals-
133 - 2020-02-27974Milwaukee Admirals-Atlantic City Blackjacks-
134 - 2020-02-28984Oakland Seals-Milwaukee Admirals-
137 - 2020-03-021004Milwaukee Admirals-Atlantic City Blackjacks-
138 - 2020-03-031016Louisville Thunder-Milwaukee Admirals-
143 - 2020-03-081042Syracuse Crunch-Milwaukee Admirals-
145 - 2020-03-101054Milwaukee Admirals-Toronto Marlies-
147 - 2020-03-121070Wilkes Barre-Scranton-Milwaukee Admirals-
149 - 2020-03-141083Milwaukee Admirals-Oakville Wolves-
151 - 2020-03-161102Louisville Thunder-Milwaukee Admirals-
152 - 2020-03-171113Milwaukee Admirals-Jacksonville Jokers-
154 - 2020-03-191126Milwaukee Admirals-Durham Pioneers-
156 - 2020-03-211140Texas Stars-Milwaukee Admirals-
159 - 2020-03-241160Milwaukee Admirals-Durham Pioneers-
161 - 2020-03-261172Philadelphia Phantoms-Milwaukee Admirals-
164 - 2020-03-291196Milwaukee Admirals-Oakville Wolves-
165 - 2020-03-301206Milwaukee Admirals-Rockford IceHogs-
166 - 2020-03-311209Iowa Wild-Milwaukee Admirals-
170 - 2020-04-041240Philadelphia Phantoms-Milwaukee Admirals-
175 - 2020-04-091268Atlantic City Blackjacks-Milwaukee Admirals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
40 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,864,000$ 1,870,250$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
25,582$ 10,531$ 21,062$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 175 12,791$ 2,238,425$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20192000010146-21000000123-11000010023-12461000031045151413755131256300.00%60100.00%0325756.14%376457.81%153050.00%493449172813
Total Regular Season2000010146-21000000123-11000010023-12461000031045151413755131256300.00%60100.00%0325756.14%376457.81%153050.00%493449172813