WEB CLIENT LEAGUE FILES


Cleveland Monsters


GP: 53 | W: 31 | L: 17 | OTL: 5 | P: 67
GF: 149 | GA: 131 | PP%: 19.86% | PK%: 80.88%
GM : Tony Pisano | Team Overall : 66
Next Games vs Binghamton Senators
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Tyler Motte (R)XXX100.00703086776981847264686974686060050680
2Eric TangradiX100.00765383698180836974686672647873050680
3Magnus PaajarviXX100.00703994767678807465717169667563050680
4Austin Czarnik (R)XX100.00653293775779777367706273675860050660
5Zack StortiniX100.00847670688080826371605971618683050660
6Richard CluneXX100.00827460727775816665636071607867050660
7Jayson Megna (R) (A)XXX100.00764187737280786863676474646464050660
8Teddy Blueger (R)X100.00743078737378797075666671686065050660
9Alexander Broadhurst (R)X100.00683588775977776869666371635452050650
10Hampus Gustafsson (R)XX100.00803379698178766576626069585053050640
11T.J. Tynan (R)X100.00663386775874736672646271626256050640
12Sam Carrick (R)XXX100.00756074687573666067595669595344050610
13Erik GustafssonX100.00703190747284876930675874567268050690
14Ryan MurphyX100.00723089766485857030686474656058050680
15Scott Mayfield (R)X100.00755580757981836430625574526760050680
16Mark BarberioX100.00683796767482846730666372567070050680
17Radim SimekX100.00763086747678766630645872456060050670
18Trevor Murphy (R)X100.00643885756872626630646269625050050630
Scratches
1Kyle Baun (R)X100.00803782738076706265585770545150050630
2Lukas Sedlak (R)XX100.00723784727174626068575571524843050610
3Tyler Randell (R)X100.00797460667472575660555468475048050590
4Alex GrantX100.00784168737775736430636068575554050650
5Keaton Thompson (R)X100.00684885787478766230595669485856050650
TEAM AVERAGE100.0073438273727876665564617159625905065
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Michael Houser (R)100.0082838280818483838482845858050780
2Parker Milner100.0075777780767373727271736161050720
Scratches
TEAM AVERAGE100.007980808079797878787779606005075
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Sheldon Keefe72757476707582CAN382750,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Tyler MotteCleveland Monsters (STL)C/LW/RW532225471380341331914912911.52%13109220.6128103012500011102246.40%116600000.8613000413
2Austin CzarnikCleveland Monsters (STL)C/RW53162541840501461574410310.19%12109620.683692312801161155245.71%116600100.7500000441
3Eric TangradiCleveland Monsters (STL)LW53112738131955599152441347.24%9108920.5528101512500051061053.75%32000000.7003000201
4Magnus PaajarviCleveland Monsters (STL)LW/RW5313203361404569167411077.78%695117.94471130128000001058.06%6200000.6900000220
5Erik GustafssonCleveland Monsters (STL)D53724315220647163263911.11%74117322.13358271181011109010.00%000000.5300000211
6Scott MayfieldCleveland Monsters (STL)D535232844401595235131814.29%75102419.32011010001106000.00%000000.5500000330
7Mark BarberioCleveland Monsters (STL)D5352328-412085596324497.94%60113721.46459331320001104110.00%000000.4900000212
8Jayson MegnaCleveland Monsters (STL)C/LW/RW53131225720012276125448510.40%994717.8934719128000002032.81%6400000.5300000053
9Teddy BluegerCleveland Monsters (STL)C53111324-1180609988277712.50%473013.781233270001202149.37%87500000.6601000302
10Richard CluneCleveland Monsters (STL)LW/RW5391322134001615913128716.87%4103119.47246171170113934145.20%25000000.4311000123
11Alexander BroadhurstCleveland Monsters (STL)C5361420-920511010130745.94%565412.3500002000031145.53%72700000.6100000200
12Radim SimekCleveland Monsters (STL)D533161915340155495318425.66%42101719.203363011800001200.00%000000.3700000113
13Ryan MurphyCleveland Monsters (STL)D5351318-3200113696922497.25%63108220.4236927136000139100.00%000000.3300000210
14Trevor MurphyCleveland Monsters (STL)D5369151520079323261818.75%5197918.49000131012104210.00%000000.3100000112
15Hampus GustafssonCleveland Monsters (STL)C/LW5341115-910055466621576.06%665112.2900001000060256.41%3900000.4600000002
16Zack StortiniCleveland Monsters (STL)RW538311-9200935058215513.79%1162211.7500001000001051.22%4100000.3500000040
17T.J. TynanCleveland Monsters (STL)C534595407684813388.33%24017.57000000110290047.87%47000000.4500000000
18Sam CarrickCleveland Monsters (STL)C/LW/RW5361748025213492017.65%43696.9700000000005050.00%1600000.3800000011
19Kyle BaunCleveland Monsters (STL)RW48437510038253572911.43%33316.9000000000002039.13%2300000.4200000001
Team Total or Average100215828043878329514051333166848711949.47%4531638416.35305989255129923522951321247.21%521900100.5328000292725
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael HouserCleveland Monsters (STL)43231350.9262.212441639012160030.40054112343
2Juuse SarosSt. Louis Blues65000.9192.2332301121490001.000263101
3Parker MilnerCleveland Monsters (STL)93400.8953.3043620242290100.0000638001
Team Total or Average58311750.9212.3632018412615940130.57175353445


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Alex GrantCleveland Monsters (STL)D291/20/1989 7:36:57 AMNo210 Lbs6 ft3NoNoNo1UFAPro & Farm750,000$Link / NHL Link
Alexander BroadhurstCleveland Monsters (STL)C253/7/1993 5:16:19 AMYes178 Lbs6 ft0NoNoNo1RFAPro & Farm570,000$Link / NHL Link
Austin CzarnikCleveland Monsters (STL)C/RW2612/12/1992 9:52:00 AMYes160 Lbs5 ft9NoNoNo2RFAPro & Farm1,210,000$1,210,000$Link / NHL Link
Eric TangradiCleveland Monsters (STL)LW292/10/1989 2:56:58 PMNo226 Lbs6 ft4NoNoNo2UFAPro & Farm800,000$800,000$Link / NHL Link
Erik GustafssonCleveland Monsters (STL)D263/14/1992 4:07:20 AMNo176 Lbs6 ft0NoNoNo1RFAPro & Farm700,000$Link / NHL Link
Hampus GustafssonCleveland Monsters (STL)C/LW2510/26/1993 6:07:56 AMYes200 Lbs6 ft4NoNoNo1RFAPro & Farm800,000$Link / NHL Link
Jayson MegnaCleveland Monsters (STL)C/LW/RW282/1/1990 10:35:34 AMYes195 Lbs6 ft1NoNoNo1RFAPro & Farm1,045,000$Link / NHL Link
Keaton ThompsonCleveland Monsters (STL)D239/14/1995 7:03:52 AMYes182 Lbs6 ft0NoNoNo2RFAPro & Farm800,000$800,000$Link / NHL Link
Kyle BaunCleveland Monsters (STL)RW265/4/1992 7:52:30 AMYes209 Lbs6 ft2NoNoNo1RFAPro & Farm1,200,000$Link / NHL Link
Lukas SedlakCleveland Monsters (STL)C/LW252/25/1993 5:25:39 AMYes205 Lbs6 ft0NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link / NHL Link
Magnus PaajarviCleveland Monsters (STL)LW/RW274/12/1991 1:42:02 PMNo206 Lbs6 ft3NoNoNo1RFAPro & Farm2,117,500$Link / NHL Link
Mark BarberioCleveland Monsters (STL)D283/23/1990 1:15:13 PMNo207 Lbs6 ft1NoNoNo1RFAPro & Farm950,000$Link / NHL Link
Michael HouserCleveland Monsters (STL)D269/13/1992 5:22:49 AMYes185 Lbs6 ft1NoNoNo1RFAPro & Farm1,320,000$Link / NHL Link
Parker MilnerCleveland Monsters (STL)D289/6/1990 8:52:50 AMNo192 Lbs6 ft0NoNoNo1RFAPro & Farm750,000$NHL Link
Radim SimekCleveland Monsters (STL)D269/20/1992 6:42:00 AMNo201 Lbs5 ft11NoNoNo3RFAPro & Farm1,000,000$1,000,000$1,000,000$NHL Link
Richard CluneCleveland Monsters (STL)LW/RW314/25/1987 2:10:27 PMNo207 Lbs5 ft10NoNoNo1UFAPro & Farm800,000$Link / NHL Link
Ryan MurphyCleveland Monsters (STL)D253/31/1993 7:57:29 AMNo185 Lbs5 ft11NoNoNo2RFAPro & Farm1,250,000$1,250,000$Link / NHL Link
Sam CarrickCleveland Monsters (STL)C/LW/RW262/4/1992 3:35:12 AMYes205 Lbs6 ft0NoNoNo2RFAPro & Farm760,000$760,000$Link / NHL Link
Scott MayfieldCleveland Monsters (STL)D2610/14/1992 5:56:39 AMYes227 Lbs6 ft4NoNoNo1RFAPro & Farm1,020,000$Link / NHL Link
T.J. TynanCleveland Monsters (STL)C262/25/1992 10:34:58 AMYes165 Lbs5 ft8NoNoNo3RFAPro & Farm900,000$900,000$900,000$Link / NHL Link
Teddy BluegerCleveland Monsters (STL)C248/15/1994 3:58:43 AMYes185 Lbs6 ft0NoNoNo3RFAPro & Farm900,000$900,000$900,000$Link / NHL Link
Trevor MurphyCleveland Monsters (STL)D237/17/1995 9:03:01 AMYes180 Lbs5 ft10NoNoNo2RFAPro & Farm1,210,000$1,210,000$Link / NHL Link
Tyler MotteCleveland Monsters (STL)C/LW/RW233/10/1995 7:48:26 AMYes191 Lbs5 ft10NoNoNo2RFAPro & Farm700,000$700,000$Link / NHL Link
Tyler RandellCleveland Monsters (STL)RW276/15/1991 9:06:54 AMYes198 Lbs6 ft1NoNoNo1RFAPro & Farm880,000$Link / NHL Link
Zack StortiniCleveland Monsters (STL)RW337/12/1985 2:10:27 AMNo219 Lbs6 ft2NoNoNo1UFAPro & Farm750,000$Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2526.44196 Lbs6 ft01.60957,300$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Eric TangradiTeddy BluegerTyler Motte32023
2Jayson MegnaAustin CzarnikMagnus Paajarvi32023
3Hampus GustafssonAlexander BroadhurstRichard Clune23032
4Sam CarrickT.J. TynanZack Stortini13032
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Erik GustafssonScott Mayfield34032
2Ryan MurphyMark Barberio33032
3Radim SimekTrevor Murphy33032
4Erik GustafssonScott Mayfield0032
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Eric TangradiTeddy BluegerTyler Motte50023
2Jayson MegnaAustin CzarnikMagnus Paajarvi50023
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Erik GustafssonRadim Simek50023
2Ryan MurphyMark Barberio50023
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Eric TangradiTyler Motte50032
2Richard CluneAustin Czarnik50032
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Erik GustafssonScott Mayfield50032
2Trevor MurphyMark Barberio50032
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Eric Tangradi50032Radim SimekScott Mayfield50032
2Tyler Motte50032Ryan MurphyTrevor Murphy50032
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Eric TangradiTyler Motte50023
2Teddy BluegerAustin Czarnik50023
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Erik GustafssonRadim Simek50023
2Ryan MurphyMark Barberio50023
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Eric TangradiTyler MotteMagnus PaajarviErik GustafssonScott Mayfield
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Eric TangradiTyler MotteRichard CluneErik GustafssonScott Mayfield
Extra Forwards
Normal PowerPlayPenalty Kill
Alexander Broadhurst, Hampus Gustafsson, T.J. TynanAlexander Broadhurst, Hampus GustafssonT.J. Tynan
Extra Defensemen
Normal PowerPlayPenalty Kill
Radim Simek, Trevor Murphy, Ryan MurphyRadim SimekTrevor Murphy, Ryan Murphy
Penalty Shots
Eric Tangradi, Tyler Motte, Teddy Blueger, Austin Czarnik, Zack Stortini
Goalie
#1 : Michael Houser, #2 : Parker Milner


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Adirondack Angels21001000954100010003211100000063341.000916250041644146851355050725642512475240.00%6183.33%0846182746.31%849181046.91%38280347.57%12838891236388688348
2Binghamton Senators10001000211000000000001000100021121.0002240041644143951355050725236622200.00%3166.67%0846182746.31%849181046.91%38280347.57%12838891236388688348
3Bridgeport Sound Tigers1000010023-1000000000001000010023-110.50024600416441422513550507253711439200.00%2150.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
4Butte Wolverines21100000431000000000002110000043120.5004812014164414435135505072552201448100.00%6183.33%0846182746.31%849181046.91%38280347.57%12838891236388688348
5Carolina Panthers1010000012-1000000000001010000012-100.0001230041644142951355050725311010212150.00%4175.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
6Denver Spurs22000000725110000003121100000041341.000714210041644146851355050725541421479222.22%4175.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
7Durham Pioneers3200000111741000000123-12200000094550.83311193000416441410851355050725921924879222.22%11281.82%0846182746.31%849181046.91%38280347.57%12838891236388688348
8Halifax Mooseheads3120000079-21010000034-12110000045-120.333711181041644149951355050725912816836116.67%6266.67%0846182746.31%849181046.91%38280347.57%12838891236388688348
9Hartford Wolfpack211000001091110000005321010000056-120.5001019290041644145851355050725581785212433.33%3166.67%0846182746.31%849181046.91%38280347.57%12838891236388688348
10Hershey Bears2110000057-2110000004131010000016-520.500591400416441455513550507255513641400.00%3166.67%0846182746.31%849181046.91%38280347.57%12838891236388688348
11Iowa Wild21100000651211000006510000000000020.50061016104164414805135505072562198606233.33%3166.67%0846182746.31%849181046.91%38280347.57%12838891236388688348
12Jacksonville Jokers2110000024-2110000002021010000004-420.500246014164414595135505072562216616116.67%30100.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
13Laval Rocket1010000024-2000000000001010000024-200.00024600416441431513550507253312027400.00%000.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
14London Knights11000000532110000005320000000000021.000510150041644142951355050725314620200.00%220.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
15Louisville Thunder42200000710-3110000003213120000048-440.500713200041644141265135505072514335281138225.00%12375.00%1846182746.31%849181046.91%38280347.57%12838891236388688348
16Milwaukee Admirals330000001055220000007341100000032161.0001019290141644149351355050725772316587114.29%8275.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
17Oakland Seals21000100440000000000002100010044030.7504711004164414415135505072565141253500.00%40100.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
18Oakville Wolves32100000761220000005321010000023-140.6677142100416441493513550507257926226414214.29%9277.78%0846182746.31%849181046.91%38280347.57%12838891236388688348
19Ontario Reign11000000312110000003120000000000021.00035800416441427513550507252596205120.00%30100.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
20Pensacola Ice Flyers30100110810-21000010034-12010001056-130.5008122000416441480513550507251023416865240.00%8275.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
21Philadelphia Phantoms11000000321110000003210000000000021.00036900416441427513550507253412433100.00%20100.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
22Richmond Renegades1000000134-11000000134-10000000000010.50036900416441435513550507253676302150.00%30100.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
23Rockford IceHogs21100000981211000009810000000000020.500916250041644146051355050725681122456233.33%10190.00%1846182746.31%849181046.91%38280347.57%12838891236388688348
24Seattle Thunderbirds11000000514110000005140000000000021.00058130041644142451355050725278417400.00%20100.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
25Syracuse Crunch211000004401010000034-11100000010120.500481201416441467513550507254211456600.00%10100.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
26Texas Stars11000000211110000002110000000000021.0002460041644142551355050725289616300.00%30100.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
27Toronto Marlies321000001183110000002112110000097240.6671118291041644146851355050725952324809333.33%11190.91%0846182746.31%849181046.91%38280347.57%12838891236388688348
Total53281702312149131182617501102815922271112012106872-4670.632149268417344164414158751355050725159745031913531462919.86%1362680.88%2846182746.31%849181046.91%38280347.57%12838891236388688348
29Wilkes Barre-Scranton1010000003-31010000003-30000000000000.0000000041644143351355050725319827100.00%40100.00%0846182746.31%849181046.91%38280347.57%12838891236388688348
_Since Last GM Reset53281702312149131182617501102815922271112012106872-4670.632149268417344164414158751355050725159745031913531462919.86%1362680.88%2846182746.31%849181046.91%38280347.57%12838891236388688348
_Vs Conference3020800101886523151220000147291815860010041365420.7008815924722416441488751355050725900242207735901718.89%861483.72%2846182746.31%849181046.91%38280347.57%12838891236388688348
_Vs Division1563000013933653000001171071033000002223-1130.4333968107114164414428513550507254671399238134617.65%39782.05%1846182746.31%849181046.91%38280347.57%12838891236388688348

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
5367OTL114926841715871597450319135334
All Games
GPWLOTWOTL SOWSOLGFGA
5328172312149131
Home Games
GPWLOTWOTL SOWSOLGFGA
2617511028159
Visitor Games
GPWLOTWOTL SOWSOLGFGA
27111212106872
Last 10 Games
WLOTWOTL SOWSOL
340201
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1462919.86%1362680.88%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
513550507254164414
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
846182746.31%849181046.91%38280347.57%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
12838891236388688348


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-11-2717Oakville Wolves2Cleveland Monsters3WBoxScore
4 - 2018-11-2935Rockford IceHogs6Cleveland Monsters4LBoxScore
5 - 2018-11-3042Cleveland Monsters4Pensacola Ice Flyers3WXXBoxScore
7 - 2018-12-0265Cleveland Monsters4Durham Pioneers1WBoxScore
8 - 2018-12-0368Cleveland Monsters3Louisville Thunder1WBoxScore
9 - 2018-12-0487Oakville Wolves1Cleveland Monsters2WBoxScore
11 - 2018-12-06109Seattle Thunderbirds1Cleveland Monsters5WBoxScore
13 - 2018-12-08124Cleveland Monsters3Oakland Seals2WBoxScore
14 - 2018-12-09136Milwaukee Admirals0Cleveland Monsters3WBoxScore
16 - 2018-12-11155Cleveland Monsters3Halifax Mooseheads2WBoxScore
17 - 2018-12-12167Cleveland Monsters3Butte Wolverines0WBoxScore
19 - 2018-12-14181Philadelphia Phantoms2Cleveland Monsters3WBoxScore
21 - 2018-12-16202Ontario Reign1Cleveland Monsters3WBoxScore
23 - 2018-12-18222Iowa Wild1Cleveland Monsters4WBoxScore
24 - 2018-12-19232Cleveland Monsters5Toronto Marlies1WBoxScore
26 - 2018-12-21246Cleveland Monsters1Louisville Thunder6LBoxScore
28 - 2018-12-23263Toronto Marlies1Cleveland Monsters2WBoxScore
29 - 2018-12-24282Hartford Wolfpack3Cleveland Monsters5WBoxScore
31 - 2018-12-26290Cleveland Monsters4Toronto Marlies6LBoxScore
33 - 2018-12-28311Halifax Mooseheads4Cleveland Monsters3LBoxScore
34 - 2018-12-29328Cleveland Monsters4Denver Spurs1WBoxScore
36 - 2018-12-31344Rockford IceHogs2Cleveland Monsters5WBoxScore
38 - 2019-01-02360Cleveland Monsters2Oakville Wolves3LBoxScore
39 - 2019-01-03373London Knights3Cleveland Monsters5WBoxScore
41 - 2019-01-05390Cleveland Monsters5Hartford Wolfpack6LBoxScore
42 - 2019-01-06401Cleveland Monsters0Louisville Thunder1LBoxScore
44 - 2019-01-08417Cleveland Monsters1Halifax Mooseheads3LBoxScore
45 - 2019-01-09428Pensacola Ice Flyers4Cleveland Monsters3LXBoxScore
47 - 2019-01-11450Louisville Thunder2Cleveland Monsters3WBoxScore
49 - 2019-01-13464Cleveland Monsters2Binghamton Senators1WXBoxScore
50 - 2019-01-14477Texas Stars1Cleveland Monsters2WBoxScore
52 - 2019-01-16497Cleveland Monsters0Jacksonville Jokers4LBoxScore
54 - 2019-01-18511Wilkes Barre-Scranton3Cleveland Monsters0LBoxScore
56 - 2019-01-20528Cleveland Monsters5Durham Pioneers3WBoxScore
57 - 2019-01-21540Hershey Bears1Cleveland Monsters4WBoxScore
58 - 2019-01-22557Milwaukee Admirals3Cleveland Monsters4WBoxScore
60 - 2019-01-24576Cleveland Monsters6Adirondack Angels3WBoxScore
61 - 2019-01-25582Cleveland Monsters2Laval Rocket4LBoxScore
63 - 2019-01-27604Cleveland Monsters1Hershey Bears6LBoxScore
64 - 2019-01-28613Iowa Wild4Cleveland Monsters2LBoxScore
66 - 2019-01-30631Durham Pioneers3Cleveland Monsters2LXXBoxScore
67 - 2019-01-31647Cleveland Monsters1Syracuse Crunch0WBoxScore
69 - 2019-02-02663Jacksonville Jokers0Cleveland Monsters2WBoxScore
72 - 2019-02-05686Adirondack Angels2Cleveland Monsters3WXBoxScore
73 - 2019-02-06693Cleveland Monsters1Butte Wolverines3LBoxScore
74 - 2019-02-07712Denver Spurs1Cleveland Monsters3WBoxScore
76 - 2019-02-09727Cleveland Monsters3Milwaukee Admirals2WBoxScore
77 - 2019-02-10735Cleveland Monsters2Bridgeport Sound Tigers3LXBoxScore
79 - 2019-02-12760Syracuse Crunch4Cleveland Monsters3LBoxScore
80 - 2019-02-13766Cleveland Monsters1Carolina Panthers2LBoxScore
83 - 2019-02-16784Cleveland Monsters1Pensacola Ice Flyers3LBoxScore
84 - 2019-02-17798Richmond Renegades4Cleveland Monsters3LXXBoxScore
86 - 2019-02-19820Cleveland Monsters1Oakland Seals2LXBoxScore
87 - 2019-02-20828Binghamton Senators-Cleveland Monsters-
90 - 2019-02-23852Denver Spurs-Cleveland Monsters-
91 - 2019-02-24863Cleveland Monsters-Iowa Wild-
93 - 2019-02-26883Philadelphia Phantoms-Cleveland Monsters-
95 - 2019-02-28898Cleveland Monsters-Rockford IceHogs-
96 - 2019-03-01914Seattle Thunderbirds-Cleveland Monsters-
98 - 2019-03-03934Carolina Panthers-Cleveland Monsters-
99 - 2019-03-04948Cleveland Monsters-London Knights-
101 - 2019-03-06963Seattle Thunderbirds-Cleveland Monsters-
102 - 2019-03-07968Cleveland Monsters-Laval Rocket-
104 - 2019-03-09998Ontario Reign-Cleveland Monsters-
Trade Deadline --- Trades can’t be done after this day is simulated!
105 - 2019-03-101006Cleveland Monsters-Texas Stars-
106 - 2019-03-111018Cleveland Monsters-Ontario Reign-
108 - 2019-03-131035Cleveland Monsters-Philadelphia Phantoms-
110 - 2019-03-151049Laval Rocket-Cleveland Monsters-
112 - 2019-03-171068Bridgeport Sound Tigers-Cleveland Monsters-
113 - 2019-03-181086Austin Aces-Cleveland Monsters-
115 - 2019-03-201106Cleveland Monsters-Richmond Renegades-
117 - 2019-03-221121Oakville Wolves-Cleveland Monsters-
118 - 2019-03-231130Cleveland Monsters-Texas Stars-
120 - 2019-03-251148Long Island Ducks-Cleveland Monsters-
121 - 2019-03-261157Cleveland Monsters-Wilkes Barre-Scranton-
123 - 2019-03-281181Butte Wolverines-Cleveland Monsters-
124 - 2019-03-291189Cleveland Monsters-Austin Aces-
127 - 2019-04-011211Rockford IceHogs-Cleveland Monsters-
129 - 2019-04-031228Cleveland Monsters-Long Island Ducks-
130 - 2019-04-041242Oakland Seals-Cleveland Monsters-
131 - 2019-04-051248Cleveland Monsters-Austin Aces-
132 - 2019-04-061258Cleveland Monsters-Seattle Thunderbirds-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,393,250$ 2,393,250$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
1,966,090$ 17,860$ 1,484,748$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 48 23,457$ 1,125,936$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201853281702312149131182617501102815922271112012106872-467149268417344164414158751355050725159745031913531462919.86%1362680.88%2846182746.31%849181046.91%38280347.57%12838891236388688348
Total Regular Season53281702312149131182617501102815922271112012106872-467149268417344164414158751355050725159745031913531462919.86%1362680.88%2846182746.31%849181046.91%38280347.57%12838891236388688348