WEB CLIENT LEAGUE FILES


New York Rangers


GP: 25 | W: 9 | L: 14 | OTL: 2 | P: 20
GF: 55 | GA: 68 | PP%: 11.76% | PK%: 82.09%
GM : Geordie Cooper | Team Overall : 74
Next Games at Ottawa Senators
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Patrice Bergeron (A)X100.00653086767492968489838382759999050782
2Tyler EnnisXX100.00733987787090977871777675789999050752
3Jason Zucker (C)XX100.00743090807494927862758079709191050752
4Boone JennerXX100.00847665768090907877787677737274050741
5Alex KillornXX98.00754283757791887965798076739086050741
6Nick SchmaltzXX100.00643094807193937968787675727370050731
7Marko DanoXXX100.00783586787687927768767474697065050721
8Riley NashXX100.00703592757684847480727076639095050721
9Jay BeagleXX100.00713488727882887285676976609999050711
10Emerson EtemXX100.00724689767883927470737272737065050700
11Brian GibbonsXXX100.00663094766482887469727175658280050700
12Markus GranlundXXX100.00693391717182897570727174677368050690
13Shea WeberX100.00945053758597977830787379769999050782
14Oscar Klefbom (A)X100.00603099787996987730797680558080050752
15Cody FransonX100.00774181688088886930686076629999050721
16Ryan Graves (R)X100.00773480758185887130706775477065050711
17Samuel GirardX100.00673096826688897630746774657062050711
18Scott HarringtonX100.00723486747785876730656274476866050690
Scratches
TEAM AVERAGE99.8973388676758891765974727666838105073
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Martin Jones100.0086949487899090909087909694050881
2Pheonix Copley (R)100.0086858286868585868685847875050820
Scratches
TEAM AVERAGE100.008690888788888888888687878505085
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Bill Peters77878488908587CAN5462,250,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Boone JennerNew York RangersC/LW2310717-3335815072234413.89%445519.79213950000052051.16%55900000.7500001221
2Patrice BergeronNew York RangersC2541317060239012332833.25%451120.461341866000000154.42%67800000.6602000120
3Jason ZuckerNew York RangersLW/RW258816-36027388224589.76%652420.970449600001251074.19%3100010.6101000120
4Shea WeberNew York RangersD2511213-12809539295243.45%3558223.310111159000042000.00%000000.4500000121
5Nick SchmaltzNew York RangersC/LW257512-3009407222559.72%550220.09101966000001152.17%4600000.4822000004
6Tyler EnnisNew York RangersLW/RW253912-34018568324423.61%148719.50022954000001058.33%3600000.4900000000
7Oscar KlefbomNew York RangersD253811-710019424214327.14%3458123.281121961000031000.00%000000.3800000200
8Ryan GravesNew York RangersD252810510020151341015.38%2450020.02112652000053000.00%000000.4000000002
9Samuel GirardNew York RangersD252810-51402919294206.90%2151620.66000175900006000.00%000000.3900000020
10Alex KillornNew York RangersLW/RW25549-116046336624507.58%953321.3422412620001272045.16%3100000.3412000110
11Scott HarringtonNew York RangersD25156-200232142425.00%1338115.2400002000036000.00%000000.3100000000
12Cody FransonNew York RangersD24145-3100381445725.00%2940516.9000000000048000.00%000000.2500000000
13Riley NashNew York RangersC/RW25145-3001561358292.86%533213.31000150000570055.10%44100000.3000000000
14Marko DanoNew York RangersC/LW/RW25404-560363335132711.43%326810.7500001000060047.62%2100000.3000000000
15Brian GibbonsNew York RangersC/LW/RW252130006201862311.11%01576.31000000000191036.36%1100000.3800000100
16Emerson EtemNew York RangersLW/RW25112-52015194414282.27%626210.4900001000010055.56%1800000.1500000001
17Markus GranlundNew York RangersC/LW/RW250110201115155180.00%21646.58000020000220028.57%1400000.1200000000
18Jay BeagleNew York RangersC/RW250110001530123180.00%51927.71000000000540052.76%25400000.1000000000
Team Total or Average4475599154-3914755266357782325727.07%206736116.478152312060900024408253.36%214000010.42370019119
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Martin JonesNew York Rangers2171110.9043.07113320586050000.6673205012
2Pheonix CopleyNew York Rangers92310.9531.273780181710010.5004520101
Team Total or Average3091420.9152.62151121667760010.57172525113


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Alex KillornNew York RangersLW/RW309/14/1989 2:46:35 AMNo196 Lbs6 ft1YesNoNo6UFAPro & Farm6,500,000$6,500,000$6,500,000$6,500,000$6,500,000$6,500,000$Link / NHL Link
Boone JennerNew York RangersC/LW266/15/1993 5:25:12 AMNo206 Lbs6 ft2YesNoNo6RFAPro & Farm4,000,000$4,000,000$4,500,000$5,000,000$5,500,000$6,000,000$Link / NHL Link
Brian GibbonsNew York RangersC/LW/RW312/26/1988 10:25:48 AMNo175 Lbs5 ft8NoNoNo1UFAPro & Farm1,250,000$Link / NHL Link
Cody FransonNew York RangersD327/12/1987 2:10:27 PMNo224 Lbs6 ft5NoNoNo3UFAPro & Farm3,000,000$2,750,000$2,500,000$Link / NHL Link
Emerson EtemNew York RangersLW/RW276/16/1992 5:09:44 AMNo212 Lbs6 ft1NoNoNo1RFAPro & Farm1,500,000$Link / NHL Link
Jason ZuckerNew York RangersLW/RW271/16/1992 2:43:56 AMNo183 Lbs5 ft11YesNoNo2RFAPro & Farm2,500,000$2,650,000$Link / NHL Link
Jay BeagleNew York RangersC/RW347/12/1985 2:10:27 AMNo210 Lbs6 ft3NoNoNo3UFAPro & Farm1,750,000$1,750,000$1,750,000$Link / NHL Link
Marko DanoNew York RangersC/LW/RW2511/30/1994 8:32:23 AMNo212 Lbs5 ft11NoNoNo1RFAPro & Farm1,400,000$Link / NHL Link
Markus GranlundNew York RangersC/LW/RW264/16/1993 4:45:54 AMNo180 Lbs6 ft0NoNoNo1RFAPro & Farm1,200,000$Link / NHL Link
Martin JonesNew York RangersD297/12/1990 8:10:28 AMNo190 Lbs6 ft4YesNoNo7UFAPro & Farm6,000,000$6,000,000$6,000,000$6,000,000$6,000,000$6,000,000$6,000,000$Link / NHL Link
Nick SchmaltzNew York RangersC/LW232/23/1996 4:46:46 AMNo177 Lbs6 ft0NoNoNo1RFAPro & Farm1,000,000$Link / NHL Link
Oscar KlefbomNew York RangersD267/20/1993 8:12:07 AMNo216 Lbs6 ft3YesNoNo3RFAPro & Farm3,000,000$4,000,000$4,000,000$Link / NHL Link
Patrice BergeronNew York RangersC347/12/1985 2:10:27 AMNo195 Lbs6 ft1NoNoNo3UFAPro & Farm6,850,000$6,850,000$6,500,000$Link / NHL Link
Pheonix CopleyNew York RangersD271/18/1992 7:42:17 AMYes200 Lbs6 ft4NoNoNo2RFAPro & Farm1,000,000$1,000,000$Link / NHL Link
Riley NashNew York RangersC/RW305/9/1989 4:21:14 AMNo190 Lbs6 ft1NoNoNo3UFAPro & Farm3,000,000$2,500,000$2,500,000$Link / NHL Link
Ryan GravesNew York RangersD245/21/1995 11:23:56 AMYes226 Lbs6 ft5NoNoNo3RFAPro & Farm950,000$950,000$950,000$Link / NHL Link
Samuel GirardNew York RangersD215/12/1998 7:13:13 AMNo162 Lbs5 ft10NoNoNo2RFAPro & Farm950,000$950,000$Link / NHL Link
Scott HarringtonNew York RangersD263/10/1993 8:21:34 AMNo207 Lbs6 ft2NoNoNo1RFAPro & Farm1,300,000$Link / NHL Link
Shea WeberNew York RangersD347/12/1985 2:10:27 AMNo229 Lbs6 ft4YesNoNo5UFAPro & Farm7,000,000$6,000,000$5,000,000$5,000,000$5,000,000$Link / NHL Link
Tyler EnnisNew York RangersLW/RW3010/6/1989 4:20:05 AMNo161 Lbs5 ft9NoNoNo1UFAPro & Farm4,000,000$Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2028.10198 Lbs6 ft12.752,907,500$

Sum Year 1 Salary Sum Year 2 Salary Sum Year 3 Salary Sum Year 4 Salary Sum Year 5 Salary
58,150,000$45,900,000$40,200,000$22,500,000$23,000,000$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jason ZuckerPatrice BergeronAlex Killorn35014
2Nick SchmaltzBoone JennerTyler Ennis35014
3Emerson EtemRiley NashMarko Dano20122
4Markus GranlundJay BeagleBrian Gibbons10230
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ryan GravesOscar Klefbom35221
2Samuel GirardShea Weber35005
3Cody FransonScott Harrington25320
4Oscar KlefbomShea Weber5122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Jason ZuckerPatrice BergeronAlex Killorn70005
2Jason ZuckerBoone JennerNick Schmaltz30005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Oscar KlefbomRyan Graves50005
2Samuel GirardShea Weber50005
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Riley NashMarko Dano50230
2Jay BeagleAlex Killorn50230
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Ryan GravesShea Weber50230
2Cody FransonOscar Klefbom50230
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Patrice Bergeron50050Scott HarringtonRyan Graves50050
2Riley Nash50050Samuel GirardCody Franson50050
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Patrice BergeronJason Zucker50023
2Boone JennerNick Schmaltz50023
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Shea WeberRyan Graves50032
2Oscar KlefbomSamuel Girard50032
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Jason ZuckerPatrice BergeronAlex KillornShea WeberOscar Klefbom
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Marko DanoRiley NashMarkus GranlundRyan GravesScott Harrington
Extra Forwards
Normal PowerPlayPenalty Kill
Patrice Bergeron, Jason Zucker, Alex KillornPatrice Bergeron, Jason ZuckerRiley Nash
Extra Defensemen
Normal PowerPlayPenalty Kill
Oscar Klefbom, Shea Weber, Samuel GirardOscar KlefbomRyan Graves, Shea Weber
Penalty Shots
Alex Killorn, Patrice Bergeron, Nick Schmaltz, Jason Zucker, Tyler Ennis
Goalie
#1 : Martin Jones, #2 : Pheonix Copley
Custom OT Lines Forwards
Patrice Bergeron, Alex Killorn, Jason Zucker, Nick Schmaltz, Tyler Ennis, Marko Dano, Marko Dano, Emerson Etem, Riley Nash, Markus Granlund, Brian Gibbons
Custom OT Lines Defensemen
Oscar Klefbom, Shea Weber, Samuel Girard, Ryan Graves, Cody Franson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Anaheim Ducks1010000023-1000000000001010000023-100.00024600200043239110341312304125.00%6350.00%047791652.07%46385254.34%21136757.49%2719216115
2Buffalo Sabres210000019811000000145-11100000053230.75091827004141561720158612012304125.00%6266.67%047791652.07%46385254.34%21136757.49%483449142613
3Calgary Flames10001000431100010004310000000000021.000481200300137151192298224300.00%10100.00%047791652.07%46385254.34%21136757.49%2821245116
4Carolina Hurricanes1010000002-2000000000001010000002-200.0000000000003397170396826000.00%30100.00%047791652.07%46385254.34%21136757.49%2214256115
5Chicago Blackhawks1010000003-3000000000001010000003-300.0000000000002910145025101016600.00%50100.00%047791652.07%46385254.34%21136757.49%2215258115
6Colorado Avalanche1010000025-31010000025-30000000000000.000235000200361115100424624100.00%30100.00%047791652.07%46385254.34%21136757.49%2216236136
7Columbus Blue Jackets10000010321000000000001000001032121.0003360011022812685318227400.00%10100.00%047791652.07%46385254.34%21136757.49%2416287126
8Dallas Stars1010000003-31010000003-30000000000000.000000000000271151102912817100.00%4175.00%047791652.07%46385254.34%21136757.49%2517226116
9Detroit Red Wings11000000303000000000001100000030321.00035801120031514120317429400.00%20100.00%047791652.07%46385254.34%21136757.49%2517207136
10Edmonton Oilers1010000023-11010000023-10000000000000.0002460002002891450321142111100.00%2150.00%047791652.07%46385254.34%21136757.49%2317256115
11Florida Panthers2020000026-42020000026-40000000000000.0002350001105711163006822124311218.18%60100.00%047791652.07%46385254.34%21136757.49%473348142411
12Los Angeles Kings1000010023-1000000000001000010023-110.500246001010371410121379423200.00%2150.00%047791652.07%46385254.34%21136757.49%2618215127
13Montreal Canadiens11000000413110000004130000000000021.00046100011204610152102244165240.00%20100.00%047791652.07%46385254.34%21136757.49%2821186126
14Nashville Predators1010000014-31010000014-30000000000000.00012300001035156140369418200.00%2150.00%047791652.07%46385254.34%21136757.49%2417226126
15New York Islanders2010100045-11010000024-21000100021120.5004812003001521419163508834500.00%4250.00%047791652.07%46385254.34%21136757.49%523743132512
16Ottawa Senators11000000312110000003120000000000021.00036900210029814703310217000.00%10100.00%047791652.07%46385254.34%21136757.49%2417226136
17Philadelphia Flyers1010000013-2000000000001010000013-200.0001120000102679100229624100.00%30100.00%047791652.07%46385254.34%21136757.49%2314228146
18San Jose Sharks211000006421010000001-11100000063320.500610160022207125232305914845500.00%4175.00%047791652.07%46385254.34%21136757.49%483447142412
Total25614021115568-131439010013042-121135011102526-1200.40055991541120171557822482562661977720715152668811.76%671282.09%047791652.07%46385254.34%21136757.49%616434586175313156
20Vancouver Canucks11000000422110000004220000000000021.0004812000310357141402662225120.00%10100.00%047791652.07%46385254.34%21136757.49%2620216115
21Washington Capitals2020000037-41010000024-21010000013-200.00036910012046151516071173340400.00%90100.00%047791652.07%46385254.34%21136757.49%432951152511
_Since Last GM Reset25614021115568-131439010013042-121135011102526-1200.40055991541120171557822482562661977720715152668811.76%671282.09%047791652.07%46385254.34%21136757.49%616434586175313156
_Vs Conference1447010113235-3724000011721-47230101015141130.46432568811128104404108135152164281119128638513.16%37489.19%047791652.07%46385254.34%21136757.49%33923733010217989
_Vs Division705010101119-82020000048-450301010711-440.286111829104233185575667821348571511400.00%20290.00%047791652.07%46385254.34%21136757.49%165113170528943

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2520W1559915478277720715152611
All Games
GPWLOTWOTL SOWSOLGFGA
2561421115568
Home Games
GPWLOTWOTL SOWSOLGFGA
143910013042
Visitor Games
GPWLOTWOTL SOWSOLGFGA
113511102526
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
68811.76%671282.09%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
248256266192017155
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
47791652.07%46385254.34%21136757.49%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
616434586175313156


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2019-10-198Nashville Predators4New York Rangers1LBoxScore
4 - 2019-10-2119New York Rangers5Buffalo Sabres3WBoxScore
5 - 2019-10-2229New York Rangers0Carolina Hurricanes2LBoxScore
9 - 2019-10-2649San Jose Sharks1New York Rangers0LBoxScore
10 - 2019-10-2757Edmonton Oilers3New York Rangers2LBoxScore
13 - 2019-10-3079Colorado Avalanche5New York Rangers2LBoxScore
14 - 2019-10-3187New York Rangers1Washington Capitals3LBoxScore
18 - 2019-11-04116Calgary Flames3New York Rangers4WXBoxScore
20 - 2019-11-06122Florida Panthers3New York Rangers1LBoxScore
22 - 2019-11-08139New York Rangers0Chicago Blackhawks3LBoxScore
25 - 2019-11-11159New York Rangers2Los Angeles Kings3LXBoxScore
27 - 2019-11-13177New York Rangers6San Jose Sharks3WBoxScore
29 - 2019-11-15189New York Rangers2Anaheim Ducks3LBoxScore
32 - 2019-11-18208Buffalo Sabres5New York Rangers4LXXBoxScore
34 - 2019-11-20216Montreal Canadiens1New York Rangers4WBoxScore
37 - 2019-11-23238New York Rangers3Detroit Red Wings0WBoxScore
38 - 2019-11-24251New York Rangers3Columbus Blue Jackets2WXXBoxScore
40 - 2019-11-26260Vancouver Canucks2New York Rangers4WBoxScore
44 - 2019-11-30277New York Rangers2New York Islanders1WXBoxScore
46 - 2019-12-02297Florida Panthers3New York Rangers1LBoxScore
48 - 2019-12-04309Dallas Stars3New York Rangers0LBoxScore
50 - 2019-12-06319New York Islanders4New York Rangers2LBoxScore
51 - 2019-12-07332New York Rangers1Philadelphia Flyers3LBoxScore
52 - 2019-12-08347Washington Capitals4New York Rangers2LBoxScore
54 - 2019-12-10365Ottawa Senators1New York Rangers3WBoxScore
57 - 2019-12-13384New York Rangers-Ottawa Senators-
59 - 2019-12-15399New York Rangers-Montreal Canadiens-
60 - 2019-12-16408Winnipeg Jets-New York Rangers-
66 - 2019-12-22450New York Rangers-Florida Panthers-
70 - 2019-12-26463New York Rangers-Tampa Bay Lightning-
74 - 2019-12-30488Arizona Coyotes-New York Rangers-
76 - 2020-01-01505Vegas Golden Knights-New York Rangers-
78 - 2020-01-03519Anaheim Ducks-New York Rangers-
82 - 2020-01-07553New York Rangers-Toronto Maple Leafs-
83 - 2020-01-08562Philadelphia Flyers-New York Rangers-
84 - 2020-01-09568Columbus Blue Jackets-New York Rangers-
86 - 2020-01-11593New York Rangers-Nashville Predators-
88 - 2020-01-13604New York Rangers-St. Louis Blues-
90 - 2020-01-15617Pittsburgh Penguins-New York Rangers-
92 - 2020-01-17633New York Rangers-Colorado Avalanche-
94 - 2020-01-19647New York Rangers-Arizona Coyotes-
96 - 2020-01-21666New York Rangers-Vegas Golden Knights-
98 - 2020-01-23673New York Islanders-New York Rangers-
100 - 2020-01-25688New York Rangers-New York Islanders-
101 - 2020-01-26701New York Rangers-Columbus Blue Jackets-
103 - 2020-01-28712Carolina Hurricanes-New York Rangers-
105 - 2020-01-30728Chicago Blackhawks-New York Rangers-
107 - 2020-02-01744New York Rangers-Boston Bruins-
109 - 2020-02-03764Philadelphia Flyers-New York Rangers-
111 - 2020-02-05779New York Rangers-New Jersey Devils-
114 - 2020-02-08799Tampa Bay Lightning-New York Rangers-
116 - 2020-02-10806Los Angeles Kings-New York Rangers-
118 - 2020-02-12822Boston Bruins-New York Rangers-
120 - 2020-02-14837Carolina Hurricanes-New York Rangers-
122 - 2020-02-16859Toronto Maple Leafs-New York Rangers-
124 - 2020-02-18872New York Rangers-Winnipeg Jets-
127 - 2020-02-21888New York Rangers-Buffalo Sabres-
129 - 2020-02-23904New York Rangers-Pittsburgh Penguins-
131 - 2020-02-25919New York Rangers-Carolina Hurricanes-
133 - 2020-02-27932Minnesota Wild-New York Rangers-
135 - 2020-02-29946New Jersey Devils-New York Rangers-
136 - 2020-03-01956New York Rangers-Washington Capitals-
139 - 2020-03-04981Tampa Bay Lightning-New York Rangers-
141 - 2020-03-06994Montreal Canadiens-New York Rangers-
143 - 2020-03-081009Washington Capitals-New York Rangers-
145 - 2020-03-101025New York Rangers-Dallas Stars-
147 - 2020-03-121036New York Rangers-Detroit Red Wings-
149 - 2020-03-141054New Jersey Devils-New York Rangers-
151 - 2020-03-161071New York Rangers-Edmonton Oilers-
153 - 2020-03-181082New York Rangers-Vancouver Canucks-
155 - 2020-03-201097New York Rangers-Calgary Flames-
156 - 2020-03-211108New York Rangers-Minnesota Wild-
159 - 2020-03-241123Detroit Red Wings-New York Rangers-
163 - 2020-03-281155New York Rangers-Toronto Maple Leafs-
165 - 2020-03-301171Pittsburgh Penguins-New York Rangers-
167 - 2020-04-011186New York Rangers-Boston Bruins-
169 - 2020-04-031197St. Louis Blues-New York Rangers-
171 - 2020-04-051215New York Rangers-Philadelphia Flyers-
172 - 2020-04-061222New York Rangers-New Jersey Devils-
174 - 2020-04-081239Ottawa Senators-New York Rangers-
176 - 2020-04-101254Columbus Blue Jackets-New York Rangers-
Trade Deadline --- Trades can’t be done after this day is simulated!
177 - 2020-04-111264New York Rangers-Pittsburgh Penguins-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2Level 3Level 4Luxury
Arena Capacity60005000220040001000
Ticket Price5525115130
Attendance8400070000308005600013686
Attendance PCT100.00%100.00%100.00%100.00%97.76%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
27 18178 - 99.88% 933,164$13,064,291$18200110

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches SalariesSpecial Salary Cap Value
59,350,000$ 55,601,885$ 0$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To DateLuxury Taxe Total
19,130,880$ 333,427$ 18,435,673$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
25,195,418$ 123 346,067$ 42,566,241$

Team Total Estimate
Estimated Season ExpensesEstimated Season Salary CapCurrent Bank AccountProjected Bank Account
44,387,579$ 59,447,194$ 18,033,335$ -1,158,826$



Depth Chart

Left WingCenterRight Wing
Tyler EnnisAGE:30PO:0OV:75
Jason ZuckerAGE:27PO:0OV:75
Boone JennerAGE:26PO:0OV:74
Alex KillornAGE:30PO:0OV:74
Nick SchmaltzAGE:23PO:0OV:73
Marko DanoAGE:25PO:0OV:72
Emerson EtemAGE:27PO:0OV:70
Brian GibbonsAGE:31PO:0OV:70
Markus GranlundAGE:26PO:0OV:69
*Tobias LindbergAGE:24PO:0OV:69
Cody McLeodAGE:35PO:0OV:69
Andreas MartinsenAGE:29PO:0OV:68
Matt NietoAGE:27PO:0OV:68
*Jean DupuyAGE:25PO:0OV:66
*Paul BittnerAGE:23PO:0OV:65
*Vaclav KarabacekAGE:23PO:0OV:65
*Colby CaveAGE:25PO:0OV:64
Patrice BergeronAGE:34PO:0OV:78
Boone JennerAGE:26PO:0OV:74
Nick SchmaltzAGE:23PO:0OV:73
Marko DanoAGE:25PO:0OV:72
Riley NashAGE:30PO:0OV:72
Jay BeagleAGE:34PO:0OV:71
Brian GibbonsAGE:31PO:0OV:70
Markus GranlundAGE:26PO:0OV:69
*Adam TambelliniAGE:25PO:0OV:66
*Jean DupuyAGE:25PO:0OV:66
*Kyle PlatzerAGE:24PO:0OV:65
*Colby CaveAGE:25PO:0OV:64
*Cameron DarcyAGE:25PO:0OV:63
*Matt SchmalzAGE:23PO:0OV:62
*Ryan OlsenAGE:25PO:0OV:62
Tyler EnnisAGE:30PO:0OV:75
Jason ZuckerAGE:27PO:0OV:75
Alex KillornAGE:30PO:0OV:74
Marko DanoAGE:25PO:0OV:72
Riley NashAGE:30PO:0OV:72
Jay BeagleAGE:34PO:0OV:71
Emerson EtemAGE:27PO:0OV:70
Brian GibbonsAGE:31PO:0OV:70
Markus GranlundAGE:26PO:0OV:69
*Tobias LindbergAGE:24PO:0OV:69
Cody McLeodAGE:35PO:0OV:69
*Scott KosmachukAGE:25PO:0OV:68
Andreas MartinsenAGE:29PO:0OV:68
Matt NietoAGE:27PO:0OV:68
*Anthony AngelloAGE:23PO:0OV:66
*Jean DupuyAGE:25PO:0OV:66
*Vaclav KarabacekAGE:23PO:0OV:65
*Matt SchmalzAGE:23PO:0OV:62

Defense #1Defense #2Goalie
Shea WeberAGE:34PO:0OV:78
Oscar KlefbomAGE:26PO:0OV:75
Cody FransonAGE:32PO:0OV:72
*Ryan GravesAGE:24PO:0OV:71
Samuel GirardAGE:21PO:0OV:71
Scott HarringtonAGE:26PO:0OV:69
*Dan RenoufAGE:25PO:0OV:68
*Tyler LewingtonAGE:25PO:0OV:68
*Niko MikkolaAGE:23PO:0OV:66
*Thomas SchemitschAGE:23PO:0OV:66
*Sergei BoikovAGE:23PO:0OV:66
*Jacob GravesAGE:24PO:0OV:66
*Dysin MayoAGE:23PO:0OV:66
*Loic LeducAGE:25PO:0OV:65
*Tyler GanlyAGE:24PO:0OV:61
Martin JonesAGE:29PO:0OV:88
*Pheonix CopleyAGE:27PO:0OV:82
Jeremy SmithAGE:30PO:0OV:81
*Hunter MiskaAGE:24PO:0OV:78
*MacKenzie SkapskiAGE:25PO:0OV:74

Prospects

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Prospect Team NameDraft Year Overall Pick Information Lien
Aidan McDonoughNew York Rangers2019209Link
Brandon SaigeonNew York Rangers2018147Link
Brett McKenzieNew York Rangers2016187Link
Carter GylanderNew York Rangers2019195Link
Cole GuttmanNew York Rangers2017208Link
Colin SuellentropNew York Rangers2011125Link
Curtis DouglasNew York Rangers201892Link
David DrakeNew York Rangers2013207Link
Dominik LakatosNew York Rangers2017167Link
Felix BibeauNew York Rangers2019194Link
Filip WesterlundNew York Rangers201767Link
Jordan FransooNew York Rangers2011182Link
Kevin ElgestalNew York Rangers2014208Link
Kyle PettitNew York Rangers2014179Link
Lane ZablockiNew York Rangers2017108Link
Marek LanghamerNew York RangersLink
Mathew HillNew York Rangers2019210Link
Matt VillaltaNew York Rangers201747Link
Matthew BoldyNew York Rangers201911Link
Nathan SmithNew York Rangers2018136Link
Nicolas MattinenNew York Rangers2016175Link
Pascal LabergeNew York Rangers201629Link
Reilly WebbNew York Rangers2017197Link
Riley DamianiNew York Rangers2018105Link
Stephen DesrocherNew York Rangers2015121Link
Tyler AngleNew York Rangers2019213Link
Ville HeinolaNew York Rangers201926Link
Vladimir BobylevNew York Rangers2016137Link
Zach StepanNew York Rangers2012107Link

Draft Picks

Year R1R2R3R4R5R6R7
2020OTT NYR
2021NYR NYR
2022NYR NYR NYR NYR NYR NYR
2023NYR NYR NYR NYR NYR NYR
2024NYR NYR NYR NYR NYR NYR NYR



[12/11/2019 10:22:18 PM] - TRADE : From New York Rangers to Carolina Hurricanes : Jamie Phillips (72), Y:2020-RND:6-CAR.
[12/11/2019 10:22:18 PM] - TRADE : From Carolina Hurricanes to New York Rangers : Jeremy Smith (81).
[11/10/2019 7:14:07 PM] - TRADE : From New York Rangers to Carolina Hurricanes : Reid McNeill (69).
[11/10/2019 7:14:07 PM] - TRADE : From Carolina Hurricanes to New York Rangers : Y:2020-RND:6-CAR.
[11/9/2019 9:39:21 PM] - TRADE : From New York Rangers to Carolina Hurricanes : Matthew Peca (68).
[11/9/2019 9:39:21 PM] - TRADE : From Carolina Hurricanes to New York Rangers : Y:2020-RND:5-NYR.
[11/2/2019 7:13:05 PM] - Patrice Bergeron has been selected as assistant for New York Rangers.
[11/2/2019 7:13:04 PM] - Unknown Player is no longer as assistant for New York Rangers.
[11/1/2019 9:06:55 PM] - TRADE : From Winnipeg Jets to New York Rangers : Cody Franson (72), Tyler Lewington (68), Y:2020-RND:4-OTT.
[11/1/2019 9:06:55 PM] - TRADE : From New York Rangers to Winnipeg Jets : Roman Polak (76).
[9/26/2019 8:38:00 PM] - TRADE : From New York Rangers to Colorado Avalanche : Chris VandeVelde (70), Y:2021-RND:5-NYR, Y:2023-RND:7-NYR.
[9/26/2019 8:38:00 PM] - TRADE : From Colorado Avalanche to New York Rangers : Brian Gibbons (70).
[9/12/2019 7:25:46 PM] - TRADE : From New York Rangers to Carolina Hurricanes : Y:2020-RND:7-CHI.
[9/12/2019 7:25:46 PM] - TRADE : From Carolina Hurricanes to New York Rangers : Lane Zablocki (P), Marek Langhamer (P).
[9/12/2019 7:24:04 PM] - TRADE : From Vegas Golden Knights to New York Rangers : Hunter Miska (77).
[9/12/2019 7:24:04 PM] - TRADE : From New York Rangers to Vegas Golden Knights : Magnus Chrona (P), Y:2020-RND:5-MON.
[9/10/2019 1:25:26 PM] - TRADE : From New York Rangers to Chicago Blackhawks : Y:2021-RND:6-NYR.
[9/10/2019 1:25:26 PM] - TRADE : From Chicago Blackhawks to New York Rangers : Paul Bittner (65), Sergei Boikov (66).
[9/3/2019 2:08:07 PM] - Hartford Wolfpack hired Craig Hartsburg for $850,000 for 3 year(s).
[7/20/2019 5:00:35 PM] - New York Rangers drafts Tyler Angle as the #213 overall pick in the Entry Draft of year 2019.
[7/20/2019 4:55:48 PM] - New York Rangers drafts Mathew Hill as the #210 overall pick in the Entry Draft of year 2019.
[7/20/2019 4:55:09 PM] - New York Rangers drafts Aidan McDonough as the #209 overall pick in the Entry Draft of year 2019.
[7/20/2019 4:40:39 PM] - New York Rangers drafts Carter Gylander as the #195 overall pick in the Entry Draft of year 2019.
[7/20/2019 4:39:22 PM] - New York Rangers drafts Felix Bibeau as the #194 overall pick in the Entry Draft of year 2019.
[7/20/2019 4:36:08 PM] - TRADE : From St. Louis Blues to New York Rangers : Y:2019-RND:7-LAK, Y:2019-RND:7-PIT.
[7/20/2019 4:36:08 PM] - TRADE : From New York Rangers to St. Louis Blues : Y:2020-RND:6-NYR.
[7/20/2019 3:59:10 PM] - TRADE : From Pittsburgh Penguins to New York Rangers : Y:2019-RND:7-NSH, Y:2019-RND:7-TAM.
[7/20/2019 3:59:10 PM] - TRADE : From New York Rangers to Pittsburgh Penguins : Y:2019-RND:6-NYR.
[7/20/2019 12:41:03 PM] - New York Rangers drafts Ville Heinola as the #26 overall pick in the Entry Draft of year 2019.



[12/11/2019 10:22:18 PM] TRADE : From New York Rangers to Carolina Hurricanes : Jamie Phillips (72), Y:2020-RND:6-CAR.
[12/11/2019 10:22:18 PM] TRADE : From Carolina Hurricanes to New York Rangers : Jeremy Smith (81).
[12/10/2019 10:15:35 PM] Matt Nieto from Hartford Wolfpack is back from Exhaustion.
[12/10/2019 10:15:35 PM] Cody McLeod from Hartford Wolfpack is back from Exhaustion.
[12/10/2019 10:15:35 PM] Tobias Lindberg from Hartford Wolfpack is back from Exhaustion.
[12/9/2019 9:19:03 PM] Hartford Wolfpack lines for next game are empty. Current rosters/lines are not erased.
[12/9/2019 9:19:01 PM] Matt Nieto from Hartford Wolfpack is injured from Exhaustion.
[12/9/2019 9:19:01 PM] Cody McLeod from Hartford Wolfpack is injured from Exhaustion.
[12/9/2019 9:19:01 PM] Tobias Lindberg from Hartford Wolfpack is injured from Exhaustion.
[12/8/2019 10:20:26 PM] Hartford Wolfpack lines for next game are empty. Current rosters/lines are not erased. But, New York Rangers lines for next game are NOT empty. Current pro rosters/lines are moved and might impact farm rosters/lines.
[12/8/2019 10:20:13 PM] Auto Lines Partial Function has been run for Hartford Wolfpack.
[12/8/2019 10:20:13 PM] Auto Roster Partial Function has been run for New York Rangers.
[12/8/2019 10:18:51 PM] Successfully loaded New York Rangers lines done with Web Base Client and SQLite Database.
[12/7/2019 9:14:23 PM] Scott Kosmachuk from Hartford Wolfpack is back from Exhaustion.
[12/7/2019 9:13:45 PM] Successfully loaded New York Rangers lines done with Web Base Client and SQLite Database.
[12/6/2019 10:09:13 PM] Adam Tambellini from Hartford Wolfpack is back from Exhaustion.
[12/5/2019 10:39:11 PM] Hartford Wolfpack lines for next game are empty. Current rosters/lines are not erased.
[12/5/2019 10:39:11 PM] Last 7 Days Farm Star : 1 - Anthony Angello of Hartford Wolfpack (2-12-14) / 2 - Matt Nieto of Hartford Wolfpack (6-6-12) / 3 - Peter Cehlarik of Oakland Seals (6-0-6)
[12/5/2019 10:39:10 PM] Scott Kosmachuk from Hartford Wolfpack is injured from Exhaustion.
[12/5/2019 10:39:10 PM] Adam Tambellini from Hartford Wolfpack is injured from Exhaustion.
[12/5/2019 10:38:04 PM] Successfully loaded New York Rangers lines done with Web Base Client and SQLite Database.
[12/4/2019 9:37:59 PM] Hartford Wolfpack lines for next game are empty. Current rosters/lines are not erased. But, New York Rangers lines for next game are NOT empty. Current pro rosters/lines are moved and might impact farm rosters/lines.
[12/4/2019 9:35:10 PM] Successfully loaded New York Rangers lines done with Web Base Client and SQLite Database.
[12/2/2019 9:58:54 PM] Hartford Wolfpack lines for next game are empty. Current rosters/lines are not erased. But, New York Rangers lines for next game are NOT empty. Current pro rosters/lines are moved and might impact farm rosters/lines.
[12/2/2019 9:58:31 PM] Auto Lines Partial Function has been run for Hartford Wolfpack.
[12/2/2019 9:58:30 PM] Auto Roster Partial Function has been run for New York Rangers.
[11/30/2019 10:14:45 PM] Auto Lines Partial Function has been run for Hartford Wolfpack.
[11/30/2019 10:14:45 PM] Auto Roster Partial Function has been run for New York Rangers.
[11/27/2019 9:23:54 PM] Auto Lines Partial Function has been run for Hartford Wolfpack.
[11/27/2019 9:23:54 PM] Auto Roster Farm Only Function has been run for New York Rangers.
[11/26/2019 9:18:13 PM] Andreas Martinsen from Hartford Wolfpack is back from Exhaustion.
[11/25/2019 9:06:26 PM] Andreas Martinsen from Hartford Wolfpack is injured from Exhaustion.
[11/25/2019 9:06:12 PM] Auto Lines Partial Function has been run for Hartford Wolfpack.
[11/25/2019 9:06:12 PM] Auto Roster Farm Only Function has been run for New York Rangers.
[11/24/2019 11:11:26 PM] Successfully loaded New York Rangers lines done with Web Base Client and SQLite Database.
[11/23/2019 10:46:42 PM] Auto Lines Partial Function has been run for Hartford Wolfpack.
[11/23/2019 10:46:42 PM] Auto Roster Partial Function has been run for New York Rangers.
[11/21/2019 10:07:38 PM] Auto Lines Partial Function has been run for Hartford Wolfpack.
[11/21/2019 10:07:38 PM] Auto Roster Farm Only Function has been run for New York Rangers.
[11/20/2019 10:25:44 PM] Successfully loaded New York Rangers lines done with Web Base Client and SQLite Database.
[11/19/2019 9:58:44 PM] Successfully loaded New York Rangers lines done with Web Base Client and SQLite Database.
[11/18/2019 9:01:56 PM] Auto Lines Partial Function has been run for Hartford Wolfpack.
[11/18/2019 9:01:55 PM] Auto Roster Partial Function has been run for New York Rangers.
[11/16/2019 9:45:42 PM] Auto Lines Partial Function has been run for Hartford Wolfpack.
[11/16/2019 9:45:42 PM] Auto Roster Farm Only Function has been run for New York Rangers.
[11/14/2019 9:57:34 PM] Last 7 Days Farm Star : 1 - Logan Shaw of Louisville Thunder (3-5-8) / 2 - Phil Di Giuseppe of Carolina Panthers (4-3-7) / 3 - Hunter Miska of Hartford Wolfpack (0.969)
[11/13/2019 10:13:42 PM] Auto Lines Partial Function has been run for Hartford Wolfpack.
[11/13/2019 10:13:42 PM] Auto Roster Partial Function has been run for New York Rangers.



No Injury or Suspension.


OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201925614021115568-131439010013042-121135011102526-12055991541120171557822482562661977720715152668811.76%671282.09%047791652.07%46385254.34%21136757.49%616434586175313156
Total Regular Season25614021115568-131439010013042-121135011102526-12055991541120171557822482562661977720715152668811.76%671282.09%047791652.07%46385254.34%21136757.49%616434586175313156