WEB CLIENT LEAGUE FILES


Cleveland Monsters


GP: 6 | W: 2 | L: 4 | OTL: 0 | P: 4
GF: 18 | GA: 19 | PP%: 41.18% | PK%: 100.00%
GM : Tony Pisano | Team Overall : 69
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Klim Kostin (R)XXX100.00805072818286877674747373757475050720
2Colton SceviourXX100.00705386747580917372727175689289050711
3Henrik Borgstrom (R)XX100.00653096827385897668757271727874050711
4Taro Hirose (R)XX100.00623096806685887564757273727470050700
5Joshua Ho-SangX100.00693090807086887753757169726850050690
6Remi ElieX100.00763485728081887260707075707872050690
7German Rubtsov (R)X100.00683095797282807370707073676868050690
8Zachary Senyshyn (R)X100.00733890847584857065686670697572050690
9Riley Barber (R)X100.00723090737579827266686673677976050680
10Rhett Gardner (R)XX100.00744880738280856872666373627068050680
11Drew O'Connor (R)X100.00683076717780827264696671656664050670
12Felix Robert (R)X100.00694578816576766770656568666365050660
13Matt BartkowskiX100.00784072737786816830675275509792050711
14Ryan MurphyX100.00713085766688917230706574657973050700
15Chad RuhwedelX100.00744084747285836730665775587873050690
16Dysin Mayo (R)X100.00714086757580826630645873487066050680
17Keaton Thompson (R)X100.00704885787680806330615569486562050670
18Cam Lee (R)X100.00705072797276776730655369466262050660
Scratches
1Shane Gersich (R)XX100.00683880847177796768666571677065050670
2Jordy Bellerive (R)X100.00746475787676786671656568676772050670
3Peter Quenneville (R)XX100.00623081757373746567646167636264050640
4Sam Carrick (R)XXX100.00766078697772726467596269596455050630
5Chad Krys (R)X100.00673084807180796430625270466867050670
6Adam Smith (R)X100.00733076687575725830554872426363050640
TEAM AVERAGE100.0071408377748182695567637262726905068
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Spencer Martin (R)100.0086909085878585838482908075050820
2Adam Scheel (R)100.0086747286878283828480826464050780
Scratches
1Casey DeSmith100.0078798080787575737372806666050730
TEAM AVERAGE100.008381818484818179807884706805078
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Sheldon Keefe72757476707582CAN4111,250,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Joshua Ho-SangCleveland Monsters (STL)RW6516-800492631119.23%012320.53303714000141040.00%1500000.9700000100
2Zachary SenyshynCleveland Monsters (STL)RW6336220610107630.00%18514.24213312000000025.00%800001.4000000001
3German RubtsovCleveland Monsters (STL)C6325000616174617.65%28814.81000000001130048.44%12800001.1300000100
4Henrik BorgstromCleveland Monsters (STL)C/LW63250004102951710.34%211819.67123512000020051.28%15600000.8500000010
5Ryan MurphyCleveland Monsters (STL)D6134-42011311299.09%413322.2511251400008000.00%000000.6000000000
6Chad RuhwedelCleveland Monsters (STL)D6044-4401759120.00%1113823.10033614000013000.00%000000.5800000000
7Cam LeeCleveland Monsters (STL)D60441201243040.00%810016.7500000000012000.00%000000.8000000001
8Drew O'ConnorCleveland Monsters (STL)LW6044000147143120.00%011519.22022212000000042.86%700000.6900000000
9Matt BartkowskiCleveland Monsters (STL)D6033-58028129360.00%414524.2202251200019000.00%000000.4100000000
10Taro HiroseCleveland Monsters (STL)LW/RW6123-900120224134.55%111819.7500071400000000.00%700000.5100000000
11Dysin MayoCleveland Monsters (STL)D6022-540763170.00%913823.0101111200002000.00%000000.2900000000
12Rhett GardnerCleveland Monsters (STL)C/LW61122405882612.50%18213.7800000000090025.00%1200000.4800000000
13Keaton ThompsonCleveland Monsters (STL)D6011100923110.00%129816.4700000000011000.00%000000.2000000000
14Remi ElieCleveland Monsters (STL)LW6011020384330.00%1518.66000000001120050.00%200000.3800000000
15Felix RobertCleveland Monsters (STL)C61010001872614.29%0396.5800000000001057.69%5200000.5100000000
16Klim KostinCleveland Monsters (STL)C/LW/RW6011-7202422182110.00%011819.69011314000000048.13%16000000.1700000000
17Riley BarberCleveland Monsters (STL)RW6000000155150.00%2406.7200000000000033.33%300000.0000000000
18Colton SceviourCleveland Monsters (STL)LW/RW6000-120611187150.00%411819.82000000001140050.00%1000000.0000000000
Team Total or Average108183452-37320159166216511408.33%62185517.18713204413400051162048.21%56000000.5600000212
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Spencer MartinCleveland Monsters (STL)62220.9043.0835120181870000.000060010
2Adam ScheelCleveland Monsters (STL)10000.9412.4025001170000.000006000
Team Total or Average72220.9073.0237720192040000.000066010


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam ScheelCleveland Monsters (STL)C/LW225/1/1999 12:53:25 PMYes190 Lbs6 ft3NoNoNo3RFAPro & Farm1,500,000$1,500,000$1,500,000$
Adam SmithCleveland Monsters (STL)D2511/6/1996 2:07:13 PMYes195 Lbs6 ft1NoNoNo2RFAPro & Farm475,000$475,000$NHL Link
Cam LeeCleveland Monsters (STL)D242/18/1997 12:08:48 PMYes190 Lbs6 ft0NoNoNo2RFAPro & Farm1,500,000$1,500,000$Link / NHL Link
Casey DeSmithCleveland Monsters (STL)C308/13/1991 9:24:51 AMNo181 Lbs6 ft0NoNoNo2UFAPro & Farm1,150,000$1,150,000$Link / NHL Link
Chad KrysCleveland Monsters (STL)D234/10/1998 2:08:32 PMYes185 Lbs5 ft11NoNoNo2RFAPro & Farm950,000$950,000$Link / NHL Link
Chad RuhwedelCleveland Monsters (STL)D315/7/1990 7:06:36 AMNo191 Lbs5 ft11NoNoNo3UFAPro & Farm1,200,000$1,200,000$1,200,000$Link / NHL Link
Colton SceviourCleveland Monsters (STL)LW/RW327/12/1989 2:10:27 AMNo192 Lbs6 ft0NoNoNo1UFAPro & Farm1,250,000$Link / NHL Link
Drew O'ConnorCleveland Monsters (STL)LW236/9/1998 9:34:36 AMYes200 Lbs6 ft3NoNoNo2RFAPro & Farm2,000,000$2,000,000$Link / NHL Link
Dysin MayoCleveland Monsters (STL)D258/17/1996 8:43:10 AMYes195 Lbs6 ft2NoNoNo2RFAPro & Farm925,000$925,000$Link / NHL Link
Felix RobertCleveland Monsters (STL)C227/24/1999 9:35:20 AMYes180 Lbs5 ft9NoNoNo3RFAPro & Farm975,000$975,000$975,000$
German RubtsovCleveland Monsters (STL)C236/27/1998 3:06:34 AMYes178 Lbs6 ft2NoNoNo1RFAPro & Farm1,000,000$Link / NHL Link
Henrik BorgstromCleveland Monsters (STL)C/LW248/6/1997 8:47:09 AMYes190 Lbs6 ft3NoNoNo1RFAPro & Farm900,000$Link / NHL Link
Jordy BelleriveCleveland Monsters (STL)C225/2/1999 5:57:55 AMYes195 Lbs5 ft10NoNoNo1RFAPro & Farm1,000,000$Link / NHL Link
Joshua Ho-SangCleveland Monsters (STL)RW251/22/1996 10:03:25 AMNo173 Lbs6 ft0NoNoNo2RFAPro & Farm1,200,000$1,200,000$Link / NHL Link
Keaton ThompsonCleveland Monsters (STL)D269/14/1995 7:03:52 AMYes197 Lbs6 ft0NoNoNo1RFAPro & Farm880,000$Link / NHL Link
Klim KostinCleveland Monsters (STL)C/LW/RW225/5/1999 3:05:20 AMYes212 Lbs6 ft3NoNoNo1RFAPro & Farm1,000,000$Link / NHL Link
Matt BartkowskiCleveland Monsters (STL)D336/4/1988 9:11:10 AMNo198 Lbs6 ft1NoNoNo2UFAPro & Farm1,250,000$1,250,000$Link / NHL Link
Peter QuennevilleCleveland Monsters (STL)C/RW273/9/1994 2:04:17 PMYes191 Lbs5 ft11NoNoNo2RFAPro & Farm500,000$500,000$NHL Link
Remi ElieCleveland Monsters (STL)LW264/16/1995 7:02:01 AMNo215 Lbs6 ft1NoNoNo2RFAPro & Farm1,500,000$1,500,000$Link / NHL Link
Rhett GardnerCleveland Monsters (STL)C/LW252/28/1996 2:06:02 PMYes225 Lbs6 ft3NoNoNo2RFAPro & Farm700,000$700,000$Link / NHL Link
Riley BarberCleveland Monsters (STL)RW272/7/1994 11:25:38 AMYes190 Lbs6 ft0NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link / NHL Link
Ryan MurphyCleveland Monsters (STL)D283/31/1993 7:57:29 AMNo181 Lbs5 ft11NoNoNo1RFAPro & Farm1,500,000$Link / NHL Link
Sam CarrickCleveland Monsters (STL)C/LW/RW292/4/1992 3:35:12 AMYes204 Lbs6 ft0NoNoNo1UFAPro & Farm840,000$Link / NHL Link
Shane GersichCleveland Monsters (STL)C/LW257/10/1996 4:24:55 PMYes180 Lbs6 ft0NoNoNo1RFAPro & Farm650,000$Link / NHL Link
Spencer MartinCleveland Monsters (STL)D266/8/1995 10:14:54 AMYes200 Lbs6 ft3NoNoNo1RFAPro & Farm829,990$Link / NHL Link
Taro HiroseCleveland Monsters (STL)LW/RW256/30/1996 6:06:53 AMYes162 Lbs5 ft10NoNoNo1RFAPro & Farm1,100,000$Link / NHL Link
Zachary SenyshynCleveland Monsters (STL)RW243/30/1997 6:35:10 AMYes192 Lbs6 ft1NoNoNo1RFAPro & Farm1,000,000$Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2725.70192 Lbs6 ft11.701,056,481$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Taro HiroseKlim KostinJoshua Ho-Sang32023
2Drew O'ConnorHenrik BorgstromColton Sceviour32023
3Rhett GardnerGerman RubtsovZachary Senyshyn23032
4Remi ElieFelix RobertRiley Barber13032
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dysin MayoMatt Bartkowski39032
2Chad RuhwedelRyan Murphy34032
3Cam LeeKeaton Thompson27032
4Dysin MayoMatt Bartkowski0032
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Taro HiroseKlim KostinJoshua Ho-Sang50023
2Drew O'ConnorHenrik BorgstromZachary Senyshyn50023
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt BartkowskiDysin Mayo50023
2Chad RuhwedelRyan Murphy50023
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1German RubtsovColton Sceviour50032
2Rhett GardnerRemi Elie50032
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt BartkowskiKeaton Thompson50032
2Cam LeeChad Ruhwedel50032
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Colton Sceviour50032Matt BartkowskiKeaton Thompson50032
2Klim Kostin50032Chad RuhwedelRyan Murphy50032
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Klim KostinJoshua Ho-Sang50023
2Colton SceviourTaro Hirose50023
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Dysin MayoMatt Bartkowski50023
2Chad RuhwedelRyan Murphy50023
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Taro HiroseKlim KostinJoshua Ho-SangHenrik BorgstromMatt Bartkowski
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Remi ElieKlim KostinColton SceviourMatt BartkowskiChad Ruhwedel
Extra Forwards
Normal PowerPlayPenalty Kill
German Rubtsov, Joshua Ho-Sang, Klim KostinJoshua Ho-Sang, Zachary SenyshynJoshua Ho-Sang
Extra Defensemen
Normal PowerPlayPenalty Kill
Ryan Murphy, Keaton Thompson, Matt BartkowskiMatt BartkowskiRyan Murphy, Dysin Mayo
Penalty Shots
Joshua Ho-Sang, Klim Kostin, Taro Hirose, Colton Sceviour, Henrik Borgstrom
Goalie
#1 : Spencer Martin, #2 : Adam Scheel


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Stockton Heat624000001819-131200000910-13120000099040.3331834520086402165869827204623415917741.18%150100.00%012023750.63%11222948.91%389440.43%149104150437839
Total624000001819-131200000910-13120000099040.3331834520086402165869827204623415917741.18%150100.00%012023750.63%11222948.91%389440.43%149104150437839
_Since Last GM Reset624000001819-131200000910-13120000099040.3331834520086402165869827204623415917741.18%150100.00%012023750.63%11222948.91%389440.43%149104150437839
_Vs Conference624000001819-131200000910-13120000099040.3331834520086402165869827204623415917741.18%150100.00%012023750.63%11222948.91%389440.43%149104150437839
_Vs Division600000001819-130000000910-13000000099000.0001834520086402165869827204623415917741.18%150100.00%012023750.63%11222948.91%389440.43%149104150437839

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
64L1183452216204623415900
All Games
GPWLOTWOTL SOWSOLGFGA
62400001819
Home Games
GPWLOTWOTL SOWSOLGFGA
3120000910
Visitor Games
GPWLOTWOTL SOWSOLGFGA
312000099
Last 10 Games
WLOTWOTL SOWSOL
220200
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
17741.18%150100.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
58698278640
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
12023750.63%11222948.91%389440.43%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
149104150437839


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2022-04-268Stockton Heat6Cleveland Monsters0LBoxScore
4 - 2022-04-2816Stockton Heat1Cleveland Monsters7WBoxScore
6 - 2022-04-3024Cleveland Monsters2Stockton Heat3LXBoxScore
8 - 2022-05-0232Cleveland Monsters4Stockton Heat1WBoxScore
10 - 2022-05-0440Stockton Heat3Cleveland Monsters2LXBoxScore
12 - 2022-05-0648Cleveland Monsters3Stockton Heat5LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
38 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,852,499$ 2,852,499$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 5 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2021624000001819-131200000910-13120000099041834520086402165869827204623415917741.18%150100.00%012023750.63%11222948.91%389440.43%149104150437839
Total Playoff624000001819-131200000910-13120000099041834520086402165869827204623415917741.18%150100.00%012023750.63%11222948.91%389440.43%149104150437839