WEB CLIENT LEAGUE FILES


Cleveland Monsters


GP: 18 | W: 11 | L: 7 | OTL: 0 | P: 22
GF: 53 | GA: 54 | PP%: 14.29% | PK%: 76.92%
GM : Tony Pisano | Team Overall : 69
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Kirby Dach (R)XX100.00703083787885907866787473746765050721
2Teddy Blueger (R)XX100.00743083757484867576737274677375050710
3Joshua Ho-SangX100.00693088807086877953777269726245050700
4Tyler MotteXXX100.00693089797283897566717276707472050700
5Klim Kostin (R)XXX100.00785070818083847472727071736870050700
6Remi ElieX100.00763485728081877260717075707368050690
7Taro Hirose (R)XX100.00613094806683867564757073716866050690
8Riley Barber (R)X100.00723088737578817266676673677472050680
9German Rubtsov (R)X100.00663094797279757370706873676364050680
10Zachary Senyshyn (R)X100.00723890827582827065676670697067050680
11Rhett Gardner (R)XX100.00744878738282856872666372626564050670
12Shane Gersich (R)XX100.00683878827177786766656469676560050660
13Slater KoekkoekX100.00753278787786857030695376567478050711
14Ryan MurphyX100.00733084766688917230706573657268050700
15Robert BortuzzoX100.00735880738182806430615074589090050690
16Radim SimekX100.00783077747783856830665874457268050690
17Keaton Thompson (R)X100.00684885787678766230595669485957050660
18Chad Krys (R)X100.00643083787177766430605268466464050650
Scratches
1Jordy Bellerive (R)X100.00736472787676776771656668676470050670
2T.J. Tynan (R)X100.00623390776178726771666471627065050650
3Peter Quenneville (R)XX100.00623081757373746567646167636264050640
4Sam Carrick (R)XXX100.00766078697772726467596269596455050630
5Adam Smith (R)X100.00733076687575725830554872426363050640
TEAM AVERAGE100.0071388376748081705667647263696705068
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Michael Houser100.0085898882858586848584867872050820
2Carter Hutton100.0082828083828283838281858784050810
Scratches
1Parker Milner100.0077807980777474727372736866050730
TEAM AVERAGE100.008184828281808180807981787405079
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Sheldon Keefe72757476707582CAN4021,250,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Kirby DachCleveland Monsters (STL)C/RW189918480283371174912.68%141022.81033844000071044.08%15200000.8800000102
2Tyler MotteCleveland Monsters (STL)C/LW/RW1898171060153173275812.33%542723.7330311440111421144.92%11800010.8000000200
3Slater KoekkoekCleveland Monsters (STL)D181151651605120204125.00%2246125.650001244000037000.00%000000.6900000100
4Joshua Ho-SangCleveland Monsters (STL)RW187916200193866204810.61%140022.2402210430000160232.14%2800000.8000000011
5Klim KostinCleveland Monsters (STL)C/LW/RW184913810051617026375.71%440822.680223430002302152.31%54100000.6400000200
6Teddy BluegerCleveland Monsters (STL)C/LW10371004020312362213.04%420620.66022426101161054.03%24800000.9700000101
7Keaton ThompsonCleveland Monsters (STL)D180883100271111370.00%2228715.950000000001000.00%000000.5600000000
8Zachary SenyshynCleveland Monsters (STL)RW1852700021827101918.52%227615.35224540000001054.17%2400000.5100000011
9Ryan MurphyCleveland Monsters (STL)D18156-5402528286193.57%2640722.621121242000120000.00%000000.2900000001
10Radim SimekCleveland Monsters (STL)D18066-21604017162100.00%2938221.2600000000036000.00%000000.3100000000
11Taro HiroseCleveland Monsters (STL)LW/RW18426-1407305516357.27%132117.85101842000001052.63%1900000.3700000000
12Riley BarberCleveland Monsters (STL)RW18235-10016233610305.56%027515.32011542000000061.11%1800000.3600000010
13Remi ElieCleveland Monsters (STL)LW18415-510026244514228.89%224513.6200004000002040.52%11600000.4100000101
14Robert BortuzzoCleveland Monsters (STL)D180445120471610240.00%2141523.0700001011039000.00%000000.1900000010
15Shane GersichCleveland Monsters (STL)C/LW18134-1401416172125.88%321812.120113171122440046.67%4500000.3700000000
16Chad KrysCleveland Monsters (STL)D1802244023108370.00%2432918.3200002000040000.00%000000.1200000000
17Rhett GardnerCleveland Monsters (STL)C/LW18202-4201922247118.33%21779.8800001000032060.19%21100000.2200000000
18Jordy BelleriveCleveland Monsters (STL)C81011001320250.00%0141.7700000000000033.33%1500001.4100000001
19German RubtsovCleveland Monsters (STL)C18000-400919182160.00%21629.03000000001230045.90%18300000.0000000000
Team Total or Average32453931461911004594416201774208.55%171582717.997142181444235835011450.29%171800010.5000000848
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Michael HouserCleveland Monsters (STL)1811610.9162.77115040536290010.0000180142
2Carter HuttonCleveland Monsters (STL)10001.0000.0033000180000.0000018000
Team Total or Average1911610.9182.69118440536470010.00001818142


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam SmithCleveland Monsters (STL)D2411/6/1996 2:07:13 PMYes195 Lbs6 ft1NoNoNo3RFAPro & Farm475,000$475,000$475,000$NHL Link
Carter HuttonCleveland Monsters (STL)C/LW3512/19/1985 9:59:08 AMNo198 Lbs6 ft0NoNoNo1UFAPro & Farm2,500,000$Link / NHL Link
Chad KrysCleveland Monsters (STL)D224/10/1998 2:08:32 PMYes185 Lbs5 ft11NoNoNo3RFAPro & Farm950,000$950,000$950,000$NHL Link
German RubtsovCleveland Monsters (STL)C226/27/1998 3:06:34 AMYes178 Lbs6 ft2NoNoNo2RFAPro & Farm1,000,000$1,000,000$Link / NHL Link
Jordy BelleriveCleveland Monsters (STL)C215/2/1999 5:57:55 AMYes195 Lbs5 ft10NoNoNo2RFAPro & Farm1,000,000$1,000,000$NHL Link
Joshua Ho-SangCleveland Monsters (STL)RW241/22/1996 10:03:25 AMNo173 Lbs6 ft0NoNoNo3RFAPro & Farm1,200,000$1,200,000$1,200,000$Link / NHL Link
Keaton ThompsonCleveland Monsters (STL)D259/14/1995 7:03:52 AMYes197 Lbs6 ft0NoNoNo2RFAPro & Farm880,000$880,000$Link / NHL Link
Kirby DachCleveland Monsters (STL)C/RW191/21/2001 2:02:43 PMYes197 Lbs6 ft4NoNoNo3RFAPro & Farm1,000,000$1,000,000$1,000,000$Link / NHL Link
Klim KostinCleveland Monsters (STL)C/LW/RW215/5/1999 3:05:20 AMYes212 Lbs6 ft3NoNoNo2RFAPro & Farm1,000,000$1,000,000$Link / NHL Link
Michael HouserCleveland Monsters (STL)D289/13/1992 5:22:49 AMNo185 Lbs6 ft1NoNoNo2RFAPro & Farm1,500,000$1,500,000$Link / NHL Link
Parker MilnerCleveland Monsters (STL)D309/6/1990 8:52:50 AMNo185 Lbs6 ft1NoNoNo1UFAPro & Farm850,000$Link / NHL Link
Peter QuennevilleCleveland Monsters (STL)C/RW263/9/1994 2:04:17 PMYes191 Lbs5 ft11NoNoNo3RFAPro & Farm500,000$500,000$500,000$NHL Link
Radim SimekCleveland Monsters (STL)D289/20/1992 6:42:00 AMNo200 Lbs5 ft11NoNoNo1RFAPro & Farm1,000,000$Link / NHL Link
Remi ElieCleveland Monsters (STL)LW254/16/1995 7:02:01 AMNo215 Lbs6 ft1NoNoNo1RFAPro & Farm950,000$Link / NHL Link
Rhett GardnerCleveland Monsters (STL)C/LW242/28/1996 2:06:02 PMYes225 Lbs6 ft3NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link / NHL Link
Riley BarberCleveland Monsters (STL)RW262/7/1994 11:25:38 AMYes190 Lbs6 ft0NoNoNo1RFAPro & Farm600,000$Link / NHL Link
Robert BortuzzoCleveland Monsters (STL)D313/18/1989 4:55:40 AMNo216 Lbs6 ft4NoNoNo1UFAPro & Farm850,000$Link / NHL Link
Ryan MurphyCleveland Monsters (STL)D273/31/1993 7:57:29 AMNo181 Lbs5 ft11NoNoNo2RFAPro & Farm1,500,000$1,500,000$Link / NHL Link
Sam CarrickCleveland Monsters (STL)C/LW/RW282/4/1992 3:35:12 AMYes204 Lbs6 ft0NoNoNo2RFAPro & Farm840,000$840,000$Link / NHL Link
Shane GersichCleveland Monsters (STL)C/LW247/10/1996 4:24:55 PMYes180 Lbs6 ft0NoNoNo2RFAPro & Farm650,000$650,000$Link / NHL Link
Slater KoekkoekCleveland Monsters (STL)D262/18/1994 4:58:38 AMNo193 Lbs6 ft2NoNoNo2RFAPro & Farm1,700,000$1,700,000$Link / NHL Link
T.J. TynanCleveland Monsters (STL)C282/25/1992 10:34:58 AMYes165 Lbs5 ft8NoNoNo1RFAPro & Farm900,000$Link / NHL Link
Taro HiroseCleveland Monsters (STL)LW/RW246/30/1996 6:06:53 AMYes162 Lbs5 ft10NoNoNo1RFAPro & Farm1,000,000$Link / NHL Link
Teddy BluegerCleveland Monsters (STL)C/LW268/15/1994 3:58:43 AMYes185 Lbs6 ft0NoNoNo1RFAPro & Farm900,000$Link / NHL Link
Tyler MotteCleveland Monsters (STL)C/LW/RW253/10/1995 7:48:26 AMNo192 Lbs5 ft10NoNoNo2RFAPro & Farm770,000$770,000$Link / NHL Link
Zachary SenyshynCleveland Monsters (STL)RW233/30/1997 6:35:10 AMYes192 Lbs6 ft1NoNoNo2RFAPro & Farm1,000,000$1,000,000$Link / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2625.46192 Lbs6 ft01.881,008,269$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tyler MotteKlim KostinKirby Dach32023
2Taro HiroseTeddy BluegerJoshua Ho-Sang32023
3Zachary SenyshynGerman RubtsovRiley Barber23032
4Remi ElieRhett GardnerShane Gersich13032
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Slater KoekkoekRobert Bortuzzo39032
2Radim SimekRyan Murphy34032
3Chad KrysKeaton Thompson27032
4Slater KoekkoekRadim Simek0032
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Taro HiroseKlim KostinJoshua Ho-Sang50023
2Remi ElieTeddy BluegerKirby Dach50023
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Tyler MotteSlater Koekkoek50023
2Riley BarberRyan Murphy50023
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1German RubtsovTyler Motte50032
2Teddy BluegerShane Gersich50032
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Radim SimekChad Krys50032
2Slater KoekkoekRobert Bortuzzo50032
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Tyler Motte50032Radim SimekChad Krys50032
2Teddy Blueger50032Slater KoekkoekRobert Bortuzzo50032
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Klim KostinJoshua Ho-Sang50023
2Tyler MotteTaro Hirose50023
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Slater KoekkoekRobert Bortuzzo50023
2Radim SimekRyan Murphy50023
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Taro HiroseKlim KostinJoshua Ho-SangSlater KoekkoekTyler Motte
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Zachary SenyshynKirby DachTyler MotteSlater KoekkoekChad Krys
Extra Forwards
Normal PowerPlayPenalty Kill
German Rubtsov, Joshua Ho-Sang, Riley BarberJoshua Ho-Sang, Zachary SenyshynShane Gersich
Extra Defensemen
Normal PowerPlayPenalty Kill
Robert Bortuzzo, Keaton Thompson, Chad KrysChad KrysRyan Murphy, Slater Koekkoek
Penalty Shots
Taro Hirose, Klim Kostin, Tyler Motte, Zachary Senyshyn, Shane Gersich
Goalie
#1 : Michael Houser, #2 : Carter Hutton


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Louisville Thunder734000001723-6422000001014-43120000079-260.42917284510201416323619318818653238604617018211.11%21480.95%236470251.85%32271145.29%17830558.36%466326465139253127
2Rockford IceHogs743000002223-1431000001112-1312000001111080.57122416300201416321019318818653244644816318422.22%22672.73%036470251.85%32271145.29%17830558.36%466326465139253127
3Stockton Heat440000001486220000006242200000086281.0001424380020141631741931881865316647201261317.69%9277.78%036470251.85%32271145.29%17830558.36%466326465139253127
Total18117000005354-11073000002728-18440000026260220.61153931461020141636201931881865364817111445949714.29%521276.92%236470251.85%32271145.29%17830558.36%466326465139253127
_Since Last GM Reset18117000005354-11073000002728-18440000026260220.61153931461020141636201931881865364817111445949714.29%521276.92%236470251.85%32271145.29%17830558.36%466326465139253127
_Vs Conference18117000005354-11073000002728-18440000026260220.61153931461020141636201931881865364817111445949714.29%521276.92%236470251.85%32271145.29%17830558.36%466326465139253127
_Vs Division110000000313106000000016160500000001515000.00031528310201416341019318818653404107662963139.68%30680.00%236470251.85%32271145.29%17830558.36%466326465139253127

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
1822L1539314662064817111445910
All Games
GPWLOTWOTL SOWSOLGFGA
1811700005354
Home Games
GPWLOTWOTL SOWSOLGFGA
107300002728
Visitor Games
GPWLOTWOTL SOWSOLGFGA
84400002626
Last 10 Games
WLOTWOTL SOWSOL
630100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
49714.29%521276.92%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
193188186532014163
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
36470251.85%32271145.29%17830558.36%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
466326465139253127


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2021-06-237Rockford IceHogs3Cleveland Monsters4WBoxScore
2 - 2021-06-2415Rockford IceHogs6Cleveland Monsters0LBoxScore
3 - 2021-06-2523Cleveland Monsters1Rockford IceHogs3LBoxScore
4 - 2021-06-2631Cleveland Monsters4Rockford IceHogs5LBoxScore
5 - 2021-06-2739Rockford IceHogs2Cleveland Monsters5WBoxScore
6 - 2021-06-2847Cleveland Monsters6Rockford IceHogs3WBoxScore
7 - 2021-06-2955Rockford IceHogs1Cleveland Monsters2WBoxScore
8 - 2021-06-3060Cleveland Monsters5Stockton Heat4WXBoxScore
9 - 2021-07-0164Cleveland Monsters3Stockton Heat2WBoxScore
10 - 2021-07-0268Stockton Heat1Cleveland Monsters2WXBoxScore
11 - 2021-07-0372Stockton Heat1Cleveland Monsters4WBoxScore
15 - 2021-07-0786Louisville Thunder2Cleveland Monsters3WBoxScore
16 - 2021-07-0888Louisville Thunder3Cleveland Monsters4WXBoxScore
17 - 2021-07-0990Cleveland Monsters1Louisville Thunder2LXBoxScore
18 - 2021-07-1092Cleveland Monsters2Louisville Thunder4LBoxScore
19 - 2021-07-1194Louisville Thunder4Cleveland Monsters2LBoxScore
20 - 2021-07-1296Cleveland Monsters4Louisville Thunder3WBoxScore
21 - 2021-07-1398Louisville Thunder5Cleveland Monsters1LBoxScore



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
31 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,621,500$ 2,613,167$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 0 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
202018117000005354-11073000002728-184400000262602253931461020141636201931881865364817111445949714.29%521276.92%236470251.85%32271145.29%17830558.36%466326465139253127
Total Playoff18117000005354-11073000002728-184400000262602253931461020141636201931881865364817111445949714.29%521276.92%236470251.85%32271145.29%17830558.36%466326465139253127